ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexadd GIF version

Theorem rexadd 10016
Description: The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))

Proof of Theorem rexadd
StepHypRef Expression
1 rexr 8160 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 8160 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 xaddval 10009 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
41, 2, 3syl2an 289 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
5 renepnf 8162 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
6 ifnefalse 3593 . . . . 5 (𝐴 ≠ +∞ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))
75, 6syl 14 . . . 4 (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))
8 renemnf 8163 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
9 ifnefalse 3593 . . . . 5 (𝐴 ≠ -∞ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))
108, 9syl 14 . . . 4 (𝐴 ∈ ℝ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))
117, 10eqtrd 2242 . . 3 (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))
12 renepnf 8162 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
13 ifnefalse 3593 . . . . 5 (𝐵 ≠ +∞ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))
1412, 13syl 14 . . . 4 (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))
15 renemnf 8163 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
16 ifnefalse 3593 . . . . 5 (𝐵 ≠ -∞ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵))
1715, 16syl 14 . . . 4 (𝐵 ∈ ℝ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵))
1814, 17eqtrd 2242 . . 3 (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = (𝐴 + 𝐵))
1911, 18sylan9eq 2262 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = (𝐴 + 𝐵))
204, 19eqtrd 2242 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wne 2380  ifcif 3582  (class class class)co 5974  cr 7966  0cc0 7967   + caddc 7970  +∞cpnf 8146  -∞cmnf 8147  *cxr 8148   +𝑒 cxad 9934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064  ax-rnegex 8076
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-xadd 9937
This theorem is referenced by:  rexsub  10017  rexaddd  10018  xaddnemnf  10021  xaddnepnf  10022  xnegid  10023  xaddcom  10025  xaddid1  10026  xnn0xadd0  10031  xnegdi  10032  xaddass  10033  xltadd1  10040  isxmet2d  14987  mettri2  15001  bl2in  15042  xmeter  15075
  Copyright terms: Public domain W3C validator