Proof of Theorem rexadd
| Step | Hyp | Ref
| Expression |
| 1 | | rexr 8089 |
. . 3
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
| 2 | | rexr 8089 |
. . 3
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
| 3 | | xaddval 9937 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) |
| 5 | | renepnf 8091 |
. . . . 5
⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| 6 | | ifnefalse 3573 |
. . . . 5
⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞),
if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) |
| 7 | 5, 6 | syl 14 |
. . . 4
⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞),
if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) |
| 8 | | renemnf 8092 |
. . . . 5
⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
| 9 | | ifnefalse 3573 |
. . . . 5
⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) |
| 10 | 8, 9 | syl 14 |
. . . 4
⊢ (𝐴 ∈ ℝ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) |
| 11 | 7, 10 | eqtrd 2229 |
. . 3
⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞),
if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) |
| 12 | | renepnf 8091 |
. . . . 5
⊢ (𝐵 ∈ ℝ → 𝐵 ≠ +∞) |
| 13 | | ifnefalse 3573 |
. . . . 5
⊢ (𝐵 ≠ +∞ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) |
| 14 | 12, 13 | syl 14 |
. . . 4
⊢ (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) |
| 15 | | renemnf 8092 |
. . . . 5
⊢ (𝐵 ∈ ℝ → 𝐵 ≠ -∞) |
| 16 | | ifnefalse 3573 |
. . . . 5
⊢ (𝐵 ≠ -∞ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵)) |
| 17 | 15, 16 | syl 14 |
. . . 4
⊢ (𝐵 ∈ ℝ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵)) |
| 18 | 14, 17 | eqtrd 2229 |
. . 3
⊢ (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = (𝐴 + 𝐵)) |
| 19 | 11, 18 | sylan9eq 2249 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞),
if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) = (𝐴 + 𝐵)) |
| 20 | 4, 19 | eqtrd 2229 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |