Proof of Theorem rexadd
| Step | Hyp | Ref
 | Expression | 
| 1 |   | rexr 8072 | 
. . 3
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) | 
| 2 |   | rexr 8072 | 
. . 3
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) | 
| 3 |   | xaddval 9920 | 
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) | 
| 4 | 1, 2, 3 | syl2an 289 | 
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) | 
| 5 |   | renepnf 8074 | 
. . . . 5
⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | 
| 6 |   | ifnefalse 3572 | 
. . . . 5
⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞),
if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) | 
| 7 | 5, 6 | syl 14 | 
. . . 4
⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞),
if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) | 
| 8 |   | renemnf 8075 | 
. . . . 5
⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | 
| 9 |   | ifnefalse 3572 | 
. . . . 5
⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) | 
| 10 | 8, 9 | syl 14 | 
. . . 4
⊢ (𝐴 ∈ ℝ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) | 
| 11 | 7, 10 | eqtrd 2229 | 
. . 3
⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞),
if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) | 
| 12 |   | renepnf 8074 | 
. . . . 5
⊢ (𝐵 ∈ ℝ → 𝐵 ≠ +∞) | 
| 13 |   | ifnefalse 3572 | 
. . . . 5
⊢ (𝐵 ≠ +∞ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) | 
| 14 | 12, 13 | syl 14 | 
. . . 4
⊢ (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) | 
| 15 |   | renemnf 8075 | 
. . . . 5
⊢ (𝐵 ∈ ℝ → 𝐵 ≠ -∞) | 
| 16 |   | ifnefalse 3572 | 
. . . . 5
⊢ (𝐵 ≠ -∞ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵)) | 
| 17 | 15, 16 | syl 14 | 
. . . 4
⊢ (𝐵 ∈ ℝ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵)) | 
| 18 | 14, 17 | eqtrd 2229 | 
. . 3
⊢ (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = (𝐴 + 𝐵)) | 
| 19 | 11, 18 | sylan9eq 2249 | 
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞),
if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) = (𝐴 + 𝐵)) | 
| 20 | 4, 19 | eqtrd 2229 | 
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |