![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluz2b2 | GIF version |
Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
Ref | Expression |
---|---|
eluz2b2 | ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b1 9603 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | |
2 | 1re 7958 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
3 | zre 9259 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
4 | ltle 8047 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (1 < 𝑁 → 1 ≤ 𝑁)) | |
5 | 2, 3, 4 | sylancr 414 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (1 < 𝑁 → 1 ≤ 𝑁)) |
6 | 5 | imdistani 445 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) |
7 | elnnz1 9278 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) | |
8 | 6, 7 | sylibr 134 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 𝑁 ∈ ℕ) |
9 | simpr 110 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 1 < 𝑁) | |
10 | 8, 9 | jca 306 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
11 | nnz 9274 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
12 | 11 | anim1i 340 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → (𝑁 ∈ ℤ ∧ 1 < 𝑁)) |
13 | 10, 12 | impbii 126 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
14 | 1, 13 | bitri 184 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 class class class wbr 4005 ‘cfv 5218 ℝcr 7812 1c1 7814 < clt 7994 ≤ cle 7995 ℕcn 8921 2c2 8972 ℤcz 9255 ℤ≥cuz 9530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-2 8980 df-n0 9179 df-z 9256 df-uz 9531 |
This theorem is referenced by: eluz2b3 9606 nprm 12125 nprmi 12126 pockthlem 12356 prmunb 12362 infpn2 12459 |
Copyright terms: Public domain | W3C validator |