| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluz2b2 | GIF version | ||
| Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
| Ref | Expression |
|---|---|
| eluz2b2 | ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b1 9722 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | |
| 2 | 1re 8071 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 3 | zre 9376 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 4 | ltle 8160 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (1 < 𝑁 → 1 ≤ 𝑁)) | |
| 5 | 2, 3, 4 | sylancr 414 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (1 < 𝑁 → 1 ≤ 𝑁)) |
| 6 | 5 | imdistani 445 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) |
| 7 | elnnz1 9395 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) | |
| 8 | 6, 7 | sylibr 134 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 𝑁 ∈ ℕ) |
| 9 | simpr 110 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 1 < 𝑁) | |
| 10 | 8, 9 | jca 306 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
| 11 | nnz 9391 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 12 | 11 | anim1i 340 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → (𝑁 ∈ ℤ ∧ 1 < 𝑁)) |
| 13 | 10, 12 | impbii 126 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
| 14 | 1, 13 | bitri 184 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 class class class wbr 4044 ‘cfv 5271 ℝcr 7924 1c1 7926 < clt 8107 ≤ cle 8108 ℕcn 9036 2c2 9087 ℤcz 9372 ℤ≥cuz 9648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-2 9095 df-n0 9296 df-z 9373 df-uz 9649 |
| This theorem is referenced by: eluz2b3 9725 nprm 12445 nprmi 12446 pockthlem 12679 prmunb 12685 infpn2 12827 mersenne 15469 perfectlem2 15472 |
| Copyright terms: Public domain | W3C validator |