ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab GIF version

Theorem elfvmptrab 5657
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
elfvmptrab.v (𝑋𝑉𝑀 ∈ V)
Assertion
Ref Expression
elfvmptrab (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑦)   𝑌(𝑥)

Proof of Theorem elfvmptrab
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 elfvmptrab.f . . . 4 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
2 csbconstg 3098 . . . . . . 7 (𝑥𝑉𝑥 / 𝑚𝑀 = 𝑀)
32eqcomd 2202 . . . . . 6 (𝑥𝑉𝑀 = 𝑥 / 𝑚𝑀)
4 rabeq 2755 . . . . . 6 (𝑀 = 𝑥 / 𝑚𝑀 → {𝑦𝑀𝜑} = {𝑦𝑥 / 𝑚𝑀𝜑})
53, 4syl 14 . . . . 5 (𝑥𝑉 → {𝑦𝑀𝜑} = {𝑦𝑥 / 𝑚𝑀𝜑})
65mpteq2ia 4119 . . . 4 (𝑥𝑉 ↦ {𝑦𝑀𝜑}) = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
71, 6eqtri 2217 . . 3 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
8 csbconstg 3098 . . . 4 (𝑋𝑉𝑋 / 𝑚𝑀 = 𝑀)
9 elfvmptrab.v . . . 4 (𝑋𝑉𝑀 ∈ V)
108, 9eqeltrd 2273 . . 3 (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
117, 10elfvmptrab1 5656 . 2 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
128eleq2d 2266 . . . 4 (𝑋𝑉 → (𝑌𝑋 / 𝑚𝑀𝑌𝑀))
1312biimpd 144 . . 3 (𝑋𝑉 → (𝑌𝑋 / 𝑚𝑀𝑌𝑀))
1413imdistani 445 . 2 ((𝑋𝑉𝑌𝑋 / 𝑚𝑀) → (𝑋𝑉𝑌𝑀))
1511, 14syl 14 1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763  csb 3084  cmpt 4094  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator