![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfvmptrab | GIF version |
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elfvmptrab.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) |
elfvmptrab.v | ⊢ (𝑋 ∈ 𝑉 → 𝑀 ∈ V) |
Ref | Expression |
---|---|
elfvmptrab | ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvmptrab.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) | |
2 | csbconstg 3095 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑉 → ⦋𝑥 / 𝑚⦌𝑀 = 𝑀) | |
3 | 2 | eqcomd 2199 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → 𝑀 = ⦋𝑥 / 𝑚⦌𝑀) |
4 | rabeq 2752 | . . . . . 6 ⊢ (𝑀 = ⦋𝑥 / 𝑚⦌𝑀 → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
6 | 5 | mpteq2ia 4116 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
7 | 1, 6 | eqtri 2214 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
8 | csbconstg 3095 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 = 𝑀) | |
9 | elfvmptrab.v | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑀 ∈ V) | |
10 | 8, 9 | eqeltrd 2270 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
11 | 7, 10 | elfvmptrab1 5653 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
12 | 8 | eleq2d 2263 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀 ↔ 𝑌 ∈ 𝑀)) |
13 | 12 | biimpd 144 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀 → 𝑌 ∈ 𝑀)) |
14 | 13 | imdistani 445 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
15 | 11, 14 | syl 14 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {crab 2476 Vcvv 2760 ⦋csb 3081 ↦ cmpt 4091 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fv 5263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |