ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab GIF version

Theorem elfvmptrab 5614
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
elfvmptrab.v (𝑋𝑉𝑀 ∈ V)
Assertion
Ref Expression
elfvmptrab (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑦)   𝑌(𝑥)

Proof of Theorem elfvmptrab
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 elfvmptrab.f . . . 4 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
2 csbconstg 3073 . . . . . . 7 (𝑥𝑉𝑥 / 𝑚𝑀 = 𝑀)
32eqcomd 2183 . . . . . 6 (𝑥𝑉𝑀 = 𝑥 / 𝑚𝑀)
4 rabeq 2731 . . . . . 6 (𝑀 = 𝑥 / 𝑚𝑀 → {𝑦𝑀𝜑} = {𝑦𝑥 / 𝑚𝑀𝜑})
53, 4syl 14 . . . . 5 (𝑥𝑉 → {𝑦𝑀𝜑} = {𝑦𝑥 / 𝑚𝑀𝜑})
65mpteq2ia 4091 . . . 4 (𝑥𝑉 ↦ {𝑦𝑀𝜑}) = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
71, 6eqtri 2198 . . 3 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
8 csbconstg 3073 . . . 4 (𝑋𝑉𝑋 / 𝑚𝑀 = 𝑀)
9 elfvmptrab.v . . . 4 (𝑋𝑉𝑀 ∈ V)
108, 9eqeltrd 2254 . . 3 (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
117, 10elfvmptrab1 5613 . 2 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
128eleq2d 2247 . . . 4 (𝑋𝑉 → (𝑌𝑋 / 𝑚𝑀𝑌𝑀))
1312biimpd 144 . . 3 (𝑋𝑉 → (𝑌𝑋 / 𝑚𝑀𝑌𝑀))
1413imdistani 445 . 2 ((𝑋𝑉𝑌𝑋 / 𝑚𝑀) → (𝑋𝑉𝑌𝑀))
1511, 14syl 14 1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  {crab 2459  Vcvv 2739  csb 3059  cmpt 4066  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fv 5226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator