Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfvmptrab | GIF version |
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elfvmptrab.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) |
elfvmptrab.v | ⊢ (𝑋 ∈ 𝑉 → 𝑀 ∈ V) |
Ref | Expression |
---|---|
elfvmptrab | ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvmptrab.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) | |
2 | csbconstg 3059 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑉 → ⦋𝑥 / 𝑚⦌𝑀 = 𝑀) | |
3 | 2 | eqcomd 2171 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → 𝑀 = ⦋𝑥 / 𝑚⦌𝑀) |
4 | rabeq 2718 | . . . . . 6 ⊢ (𝑀 = ⦋𝑥 / 𝑚⦌𝑀 → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
6 | 5 | mpteq2ia 4068 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
7 | 1, 6 | eqtri 2186 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
8 | csbconstg 3059 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 = 𝑀) | |
9 | elfvmptrab.v | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑀 ∈ V) | |
10 | 8, 9 | eqeltrd 2243 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
11 | 7, 10 | elfvmptrab1 5580 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
12 | 8 | eleq2d 2236 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀 ↔ 𝑌 ∈ 𝑀)) |
13 | 12 | biimpd 143 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀 → 𝑌 ∈ 𝑀)) |
14 | 13 | imdistani 442 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
15 | 11, 14 | syl 14 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 {crab 2448 Vcvv 2726 ⦋csb 3045 ↦ cmpt 4043 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |