ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab GIF version

Theorem elfvmptrab 5703
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
elfvmptrab.v (𝑋𝑉𝑀 ∈ V)
Assertion
Ref Expression
elfvmptrab (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑦)   𝑌(𝑥)

Proof of Theorem elfvmptrab
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 elfvmptrab.f . . . 4 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
2 csbconstg 3118 . . . . . . 7 (𝑥𝑉𝑥 / 𝑚𝑀 = 𝑀)
32eqcomd 2215 . . . . . 6 (𝑥𝑉𝑀 = 𝑥 / 𝑚𝑀)
4 rabeq 2771 . . . . . 6 (𝑀 = 𝑥 / 𝑚𝑀 → {𝑦𝑀𝜑} = {𝑦𝑥 / 𝑚𝑀𝜑})
53, 4syl 14 . . . . 5 (𝑥𝑉 → {𝑦𝑀𝜑} = {𝑦𝑥 / 𝑚𝑀𝜑})
65mpteq2ia 4149 . . . 4 (𝑥𝑉 ↦ {𝑦𝑀𝜑}) = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
71, 6eqtri 2230 . . 3 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
8 csbconstg 3118 . . . 4 (𝑋𝑉𝑋 / 𝑚𝑀 = 𝑀)
9 elfvmptrab.v . . . 4 (𝑋𝑉𝑀 ∈ V)
108, 9eqeltrd 2286 . . 3 (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
117, 10elfvmptrab1 5702 . 2 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
128eleq2d 2279 . . . 4 (𝑋𝑉 → (𝑌𝑋 / 𝑚𝑀𝑌𝑀))
1312biimpd 144 . . 3 (𝑋𝑉 → (𝑌𝑋 / 𝑚𝑀𝑌𝑀))
1413imdistani 445 . 2 ((𝑋𝑉𝑌𝑋 / 𝑚𝑀) → (𝑋𝑉𝑌𝑀))
1511, 14syl 14 1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  {crab 2492  Vcvv 2779  csb 3104  cmpt 4124  cfv 5294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fv 5302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator