![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnveqd | GIF version |
Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.) |
Ref | Expression |
---|---|
cnveqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cnveqd | ⊢ (𝜑 → ◡𝐴 = ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | cnveq 4836 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ◡𝐴 = ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ◡ccnv 4658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 df-br 4030 df-opab 4091 df-cnv 4667 |
This theorem is referenced by: cnvsng 5151 cores2 5178 suppssof1 6148 2ndval2 6209 2nd1st 6233 cnvf1olem 6277 brtpos2 6304 dftpos4 6316 tpostpos 6317 tposf12 6322 xpcomco 6880 infeq123d 7075 fsumcnv 11580 fprodcnv 11768 ennnfonelemf1 12575 xpsval 12935 grpinvcnv 13140 grplactcnv 13174 eqglact 13295 isunitd 13602 znval 14124 znle2 14140 txswaphmeolem 14488 |
Copyright terms: Public domain | W3C validator |