Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnveqd | GIF version |
Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.) |
Ref | Expression |
---|---|
cnveqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cnveqd | ⊢ (𝜑 → ◡𝐴 = ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | cnveq 4778 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ◡𝐴 = ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ◡ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 df-br 3983 df-opab 4044 df-cnv 4612 |
This theorem is referenced by: cnvsng 5089 cores2 5116 suppssof1 6067 2ndval2 6124 2nd1st 6148 cnvf1olem 6192 brtpos2 6219 dftpos4 6231 tpostpos 6232 tposf12 6237 xpcomco 6792 infeq123d 6981 fsumcnv 11378 fprodcnv 11566 ennnfonelemf1 12351 txswaphmeolem 12960 |
Copyright terms: Public domain | W3C validator |