Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqd GIF version

Theorem cnveqd 4715
 Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.)
Hypothesis
Ref Expression
cnveqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
cnveqd (𝜑𝐴 = 𝐵)

Proof of Theorem cnveqd
StepHypRef Expression
1 cnveqd.1 . 2 (𝜑𝐴 = 𝐵)
2 cnveq 4713 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2syl 14 1 (𝜑𝐴 = 𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1331  ◡ccnv 4538 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-in 3077  df-ss 3084  df-br 3930  df-opab 3990  df-cnv 4547 This theorem is referenced by:  cnvsng  5024  cores2  5051  suppssof1  5999  2ndval2  6054  2nd1st  6078  cnvf1olem  6121  brtpos2  6148  dftpos4  6160  tpostpos  6161  tposf12  6166  xpcomco  6720  infeq123d  6903  fsumcnv  11206  ennnfonelemf1  11931  txswaphmeolem  12489
 Copyright terms: Public domain W3C validator