ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqd GIF version

Theorem cnveqd 4838
Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.)
Hypothesis
Ref Expression
cnveqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
cnveqd (𝜑𝐴 = 𝐵)

Proof of Theorem cnveqd
StepHypRef Expression
1 cnveqd.1 . 2 (𝜑𝐴 = 𝐵)
2 cnveq 4836 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2syl 14 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166  df-br 4030  df-opab 4091  df-cnv 4667
This theorem is referenced by:  cnvsng  5151  cores2  5178  suppssof1  6148  2ndval2  6209  2nd1st  6233  cnvf1olem  6277  brtpos2  6304  dftpos4  6316  tpostpos  6317  tposf12  6322  xpcomco  6880  infeq123d  7075  fsumcnv  11580  fprodcnv  11768  ennnfonelemf1  12575  xpsval  12935  grpinvcnv  13140  grplactcnv  13174  eqglact  13295  isunitd  13602  znval  14124  znle2  14140  txswaphmeolem  14488
  Copyright terms: Public domain W3C validator