| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cnveqd | GIF version | ||
| Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| cnveqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| cnveqd | ⊢ (𝜑 → ◡𝐴 = ◡𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnveqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | cnveq 4840 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ◡𝐴 = ◡𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ◡ccnv 4662 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-br 4034 df-opab 4095 df-cnv 4671 | 
| This theorem is referenced by: cnvsng 5155 cores2 5182 suppssof1 6153 2ndval2 6214 2nd1st 6238 cnvf1olem 6282 brtpos2 6309 dftpos4 6321 tpostpos 6322 tposf12 6327 xpcomco 6885 infeq123d 7082 fsumcnv 11602 fprodcnv 11790 ennnfonelemf1 12635 xpsval 12995 grpinvcnv 13200 grplactcnv 13234 eqglact 13355 isunitd 13662 znval 14192 znle2 14208 txswaphmeolem 14556 | 
| Copyright terms: Public domain | W3C validator |