![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnveqd | GIF version |
Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.) |
Ref | Expression |
---|---|
cnveqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cnveqd | ⊢ (𝜑 → ◡𝐴 = ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | cnveq 4641 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ◡𝐴 = ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ◡ccnv 4466 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-in 3019 df-ss 3026 df-br 3868 df-opab 3922 df-cnv 4475 |
This theorem is referenced by: cnvsng 4950 cores2 4977 suppssof1 5910 2ndval2 5965 2nd1st 5988 cnvf1olem 6027 brtpos2 6054 dftpos4 6066 tpostpos 6067 tposf12 6072 xpcomco 6622 infeq123d 6791 fsumcnv 10980 |
Copyright terms: Public domain | W3C validator |