| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cnveq | GIF version | ||
| Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnvss 4839 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | cnvss 4839 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
| 3 | 1, 2 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | 
| 4 | eqss 3198 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3198 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ⊆ wss 3157 ◡ccnv 4662 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-br 4034 df-opab 4095 df-cnv 4671 | 
| This theorem is referenced by: cnveqi 4841 cnveqd 4842 rneq 4893 cnveqb 5125 funcnvuni 5327 f1eq1 5458 f1o00 5539 foeqcnvco 5837 tposfn2 6324 ereq1 6599 infeq3 7081 1arith 12536 isrim0 13717 psrbag 14223 iscn 14433 ishmeo 14540 | 
| Copyright terms: Public domain | W3C validator |