ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq GIF version

Theorem cnveq 4778
Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
cnveq (𝐴 = 𝐵𝐴 = 𝐵)

Proof of Theorem cnveq
StepHypRef Expression
1 cnvss 4777 . . 3 (𝐴𝐵𝐴𝐵)
2 cnvss 4777 . . 3 (𝐵𝐴𝐵𝐴)
31, 2anim12i 336 . 2 ((𝐴𝐵𝐵𝐴) → (𝐴𝐵𝐵𝐴))
4 eqss 3157 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 eqss 3157 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
63, 4, 53imtr4i 200 1 (𝐴 = 𝐵𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wss 3116  ccnv 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129  df-br 3983  df-opab 4044  df-cnv 4612
This theorem is referenced by:  cnveqi  4779  cnveqd  4780  rneq  4831  cnveqb  5059  funcnvuni  5257  f1eq1  5388  f1o00  5467  foeqcnvco  5758  tposfn2  6234  ereq1  6508  infeq3  6980  1arith  12297  iscn  12837  ishmeo  12944
  Copyright terms: Public domain W3C validator