ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq GIF version

Theorem cnveq 4841
Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
cnveq (𝐴 = 𝐵𝐴 = 𝐵)

Proof of Theorem cnveq
StepHypRef Expression
1 cnvss 4840 . . 3 (𝐴𝐵𝐴𝐵)
2 cnvss 4840 . . 3 (𝐵𝐴𝐵𝐴)
31, 2anim12i 338 . 2 ((𝐴𝐵𝐵𝐴) → (𝐴𝐵𝐵𝐴))
4 eqss 3199 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 eqss 3199 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
63, 4, 53imtr4i 201 1 (𝐴 = 𝐵𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wss 3157  ccnv 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170  df-br 4035  df-opab 4096  df-cnv 4672
This theorem is referenced by:  cnveqi  4842  cnveqd  4843  rneq  4894  cnveqb  5126  funcnvuni  5328  f1eq1  5461  f1o00  5542  foeqcnvco  5840  tposfn2  6333  ereq1  6608  infeq3  7090  1arith  12561  isrim0  13793  psrbag  14299  psr1clfi  14316  iscn  14517  ishmeo  14624
  Copyright terms: Public domain W3C validator