ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq GIF version

Theorem cnveq 4896
Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
cnveq (𝐴 = 𝐵𝐴 = 𝐵)

Proof of Theorem cnveq
StepHypRef Expression
1 cnvss 4895 . . 3 (𝐴𝐵𝐴𝐵)
2 cnvss 4895 . . 3 (𝐵𝐴𝐵𝐴)
31, 2anim12i 338 . 2 ((𝐴𝐵𝐵𝐴) → (𝐴𝐵𝐵𝐴))
4 eqss 3239 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 eqss 3239 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
63, 4, 53imtr4i 201 1 (𝐴 = 𝐵𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wss 3197  ccnv 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-br 4084  df-opab 4146  df-cnv 4727
This theorem is referenced by:  cnveqi  4897  cnveqd  4898  rneq  4951  cnveqb  5184  funcnvuni  5390  f1eq1  5526  f1o00  5608  foeqcnvco  5914  tposfn2  6412  ereq1  6687  infeq3  7182  1arith  12890  isrim0  14125  psrbag  14633  psr1clfi  14652  iscn  14871  ishmeo  14978
  Copyright terms: Public domain W3C validator