ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq GIF version

Theorem cnveq 4853
Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
cnveq (𝐴 = 𝐵𝐴 = 𝐵)

Proof of Theorem cnveq
StepHypRef Expression
1 cnvss 4852 . . 3 (𝐴𝐵𝐴𝐵)
2 cnvss 4852 . . 3 (𝐵𝐴𝐵𝐴)
31, 2anim12i 338 . 2 ((𝐴𝐵𝐵𝐴) → (𝐴𝐵𝐵𝐴))
4 eqss 3208 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 eqss 3208 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
63, 4, 53imtr4i 201 1 (𝐴 = 𝐵𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wss 3166  ccnv 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-in 3172  df-ss 3179  df-br 4046  df-opab 4107  df-cnv 4684
This theorem is referenced by:  cnveqi  4854  cnveqd  4855  rneq  4906  cnveqb  5139  funcnvuni  5344  f1eq1  5478  f1o00  5559  foeqcnvco  5861  tposfn2  6354  ereq1  6629  infeq3  7119  1arith  12723  isrim0  13956  psrbag  14464  psr1clfi  14483  iscn  14702  ishmeo  14809
  Copyright terms: Public domain W3C validator