| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpima2m | GIF version | ||
| Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| Ref | Expression |
|---|---|
| xpima2m | ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4695 | . . . 4 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶) | |
| 2 | df-res 4694 | . . . . 5 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
| 3 | 2 | rneqi 4914 | . . . 4 ⊢ ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) |
| 4 | inxp 4819 | . . . . 5 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
| 5 | 4 | rneqi 4914 | . . . 4 ⊢ ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
| 6 | 1, 3, 5 | 3eqtri 2231 | . . 3 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
| 7 | rnxpm 5120 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = (𝐵 ∩ V)) | |
| 8 | 6, 7 | eqtrid 2251 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = (𝐵 ∩ V)) |
| 9 | inv1 3501 | . 2 ⊢ (𝐵 ∩ V) = 𝐵 | |
| 10 | 8, 9 | eqtrdi 2255 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 ∩ cin 3169 × cxp 4680 ran crn 4683 ↾ cres 4684 “ cima 4685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 df-opab 4113 df-xp 4688 df-rel 4689 df-cnv 4690 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 |
| This theorem is referenced by: xpimasn 5139 |
| Copyright terms: Public domain | W3C validator |