ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpima2m GIF version

Theorem xpima2m 5138
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima2m (∃𝑥 𝑥 ∈ (𝐴𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem xpima2m
StepHypRef Expression
1 df-ima 4695 . . . 4 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶)
2 df-res 4694 . . . . 5 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
32rneqi 4914 . . . 4 ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
4 inxp 4819 . . . . 5 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
54rneqi 4914 . . . 4 ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴𝐶) × (𝐵 ∩ V))
61, 3, 53eqtri 2231 . . 3 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴𝐶) × (𝐵 ∩ V))
7 rnxpm 5120 . . 3 (∃𝑥 𝑥 ∈ (𝐴𝐶) → ran ((𝐴𝐶) × (𝐵 ∩ V)) = (𝐵 ∩ V))
86, 7eqtrid 2251 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐶) → ((𝐴 × 𝐵) “ 𝐶) = (𝐵 ∩ V))
9 inv1 3501 . 2 (𝐵 ∩ V) = 𝐵
108, 9eqtrdi 2255 1 (∃𝑥 𝑥 ∈ (𝐴𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  cin 3169   × cxp 4680  ran crn 4683  cres 4684  cima 4685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-xp 4688  df-rel 4689  df-cnv 4690  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695
This theorem is referenced by:  xpimasn  5139
  Copyright terms: Public domain W3C validator