| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpima2m | GIF version | ||
| Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| Ref | Expression |
|---|---|
| xpima2m | ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4729 | . . . 4 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶) | |
| 2 | df-res 4728 | . . . . 5 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
| 3 | 2 | rneqi 4948 | . . . 4 ⊢ ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) |
| 4 | inxp 4853 | . . . . 5 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
| 5 | 4 | rneqi 4948 | . . . 4 ⊢ ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
| 6 | 1, 3, 5 | 3eqtri 2254 | . . 3 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
| 7 | rnxpm 5154 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = (𝐵 ∩ V)) | |
| 8 | 6, 7 | eqtrid 2274 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = (𝐵 ∩ V)) |
| 9 | inv1 3528 | . 2 ⊢ (𝐵 ∩ V) = 𝐵 | |
| 10 | 8, 9 | eqtrdi 2278 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 × cxp 4714 ran crn 4717 ↾ cres 4718 “ cima 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 df-cnv 4724 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 |
| This theorem is referenced by: xpimasn 5173 |
| Copyright terms: Public domain | W3C validator |