![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpima2m | GIF version |
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
xpima2m | ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4673 | . . . 4 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶) | |
2 | df-res 4672 | . . . . 5 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
3 | 2 | rneqi 4891 | . . . 4 ⊢ ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) |
4 | inxp 4797 | . . . . 5 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
5 | 4 | rneqi 4891 | . . . 4 ⊢ ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
6 | 1, 3, 5 | 3eqtri 2218 | . . 3 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
7 | rnxpm 5096 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = (𝐵 ∩ V)) | |
8 | 6, 7 | eqtrid 2238 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = (𝐵 ∩ V)) |
9 | inv1 3484 | . 2 ⊢ (𝐵 ∩ V) = 𝐵 | |
10 | 8, 9 | eqtrdi 2242 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 ∩ cin 3153 × cxp 4658 ran crn 4661 ↾ cres 4662 “ cima 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: xpimasn 5115 |
Copyright terms: Public domain | W3C validator |