ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpima2m GIF version

Theorem xpima2m 5172
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima2m (∃𝑥 𝑥 ∈ (𝐴𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem xpima2m
StepHypRef Expression
1 df-ima 4729 . . . 4 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶)
2 df-res 4728 . . . . 5 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
32rneqi 4948 . . . 4 ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
4 inxp 4853 . . . . 5 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
54rneqi 4948 . . . 4 ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴𝐶) × (𝐵 ∩ V))
61, 3, 53eqtri 2254 . . 3 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴𝐶) × (𝐵 ∩ V))
7 rnxpm 5154 . . 3 (∃𝑥 𝑥 ∈ (𝐴𝐶) → ran ((𝐴𝐶) × (𝐵 ∩ V)) = (𝐵 ∩ V))
86, 7eqtrid 2274 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐶) → ((𝐴 × 𝐵) “ 𝐶) = (𝐵 ∩ V))
9 inv1 3528 . 2 (𝐵 ∩ V) = 𝐵
108, 9eqtrdi 2278 1 (∃𝑥 𝑥 ∈ (𝐴𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  cin 3196   × cxp 4714  ran crn 4717  cres 4718  cima 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-rel 4723  df-cnv 4724  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729
This theorem is referenced by:  xpimasn  5173
  Copyright terms: Public domain W3C validator