ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpima2m GIF version

Theorem xpima2m 5078
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima2m (∃𝑥 𝑥 ∈ (𝐴𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem xpima2m
StepHypRef Expression
1 df-ima 4641 . . . 4 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶)
2 df-res 4640 . . . . 5 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
32rneqi 4857 . . . 4 ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
4 inxp 4763 . . . . 5 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
54rneqi 4857 . . . 4 ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴𝐶) × (𝐵 ∩ V))
61, 3, 53eqtri 2202 . . 3 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴𝐶) × (𝐵 ∩ V))
7 rnxpm 5060 . . 3 (∃𝑥 𝑥 ∈ (𝐴𝐶) → ran ((𝐴𝐶) × (𝐵 ∩ V)) = (𝐵 ∩ V))
86, 7eqtrid 2222 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐶) → ((𝐴 × 𝐵) “ 𝐶) = (𝐵 ∩ V))
9 inv1 3461 . 2 (𝐵 ∩ V) = 𝐵
108, 9eqtrdi 2226 1 (∃𝑥 𝑥 ∈ (𝐴𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wex 1492  wcel 2148  Vcvv 2739  cin 3130   × cxp 4626  ran crn 4629  cres 4630  cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by:  xpimasn  5079
  Copyright terms: Public domain W3C validator