Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpima2m | GIF version |
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
xpima2m | ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4596 | . . . 4 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶) | |
2 | df-res 4595 | . . . . 5 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
3 | 2 | rneqi 4811 | . . . 4 ⊢ ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) |
4 | inxp 4717 | . . . . 5 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
5 | 4 | rneqi 4811 | . . . 4 ⊢ ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
6 | 1, 3, 5 | 3eqtri 2182 | . . 3 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
7 | rnxpm 5012 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = (𝐵 ∩ V)) | |
8 | 6, 7 | syl5eq 2202 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = (𝐵 ∩ V)) |
9 | inv1 3430 | . 2 ⊢ (𝐵 ∩ V) = 𝐵 | |
10 | 8, 9 | eqtrdi 2206 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∃wex 1472 ∈ wcel 2128 Vcvv 2712 ∩ cin 3101 × cxp 4581 ran crn 4584 ↾ cres 4585 “ cima 4586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-xp 4589 df-rel 4590 df-cnv 4591 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 |
This theorem is referenced by: xpimasn 5031 |
Copyright terms: Public domain | W3C validator |