| Step | Hyp | Ref
 | Expression | 
| 1 |   | isbasisg 14280 | 
. . . 4
⊢ (𝐵 ∈ TopBases → (𝐵 ∈ TopBases ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) | 
| 2 | 1 | ibi 176 | 
. . 3
⊢ (𝐵 ∈ TopBases →
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) | 
| 3 |   | ineq1 3357 | 
. . . . 5
⊢ (𝑥 = 𝐶 → (𝑥 ∩ 𝑦) = (𝐶 ∩ 𝑦)) | 
| 4 | 3 | pweqd 3610 | 
. . . . . . 7
⊢ (𝑥 = 𝐶 → 𝒫 (𝑥 ∩ 𝑦) = 𝒫 (𝐶 ∩ 𝑦)) | 
| 5 | 4 | ineq2d 3364 | 
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) = (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦))) | 
| 6 | 5 | unieqd 3850 | 
. . . . 5
⊢ (𝑥 = 𝐶 → ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) = ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦))) | 
| 7 | 3, 6 | sseq12d 3214 | 
. . . 4
⊢ (𝑥 = 𝐶 → ((𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝐶 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦)))) | 
| 8 |   | ineq2 3358 | 
. . . . 5
⊢ (𝑦 = 𝐷 → (𝐶 ∩ 𝑦) = (𝐶 ∩ 𝐷)) | 
| 9 | 8 | pweqd 3610 | 
. . . . . . 7
⊢ (𝑦 = 𝐷 → 𝒫 (𝐶 ∩ 𝑦) = 𝒫 (𝐶 ∩ 𝐷)) | 
| 10 | 9 | ineq2d 3364 | 
. . . . . 6
⊢ (𝑦 = 𝐷 → (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦)) = (𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) | 
| 11 | 10 | unieqd 3850 | 
. . . . 5
⊢ (𝑦 = 𝐷 → ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦)) = ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) | 
| 12 | 8, 11 | sseq12d 3214 | 
. . . 4
⊢ (𝑦 = 𝐷 → ((𝐶 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝑦)) ↔ (𝐶 ∩ 𝐷) ⊆ ∪
(𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷)))) | 
| 13 | 7, 12 | rspc2v 2881 | 
. . 3
⊢ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) → (𝐶 ∩ 𝐷) ⊆ ∪
(𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷)))) | 
| 14 | 2, 13 | syl5com 29 | 
. 2
⊢ (𝐵 ∈ TopBases → ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∪
(𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷)))) | 
| 15 | 14 | 3impib 1203 | 
1
⊢ ((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∪
(𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) |