ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basis1 GIF version

Theorem basis1 14686
Description: Property of a basis. (Contributed by NM, 16-Jul-2006.)
Assertion
Ref Expression
basis1 ((𝐵 ∈ TopBases ∧ 𝐶𝐵𝐷𝐵) → (𝐶𝐷) ⊆ (𝐵 ∩ 𝒫 (𝐶𝐷)))

Proof of Theorem basis1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasisg 14683 . . . 4 (𝐵 ∈ TopBases → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
21ibi 176 . . 3 (𝐵 ∈ TopBases → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
3 ineq1 3378 . . . . 5 (𝑥 = 𝐶 → (𝑥𝑦) = (𝐶𝑦))
43pweqd 3634 . . . . . . 7 (𝑥 = 𝐶 → 𝒫 (𝑥𝑦) = 𝒫 (𝐶𝑦))
54ineq2d 3385 . . . . . 6 (𝑥 = 𝐶 → (𝐵 ∩ 𝒫 (𝑥𝑦)) = (𝐵 ∩ 𝒫 (𝐶𝑦)))
65unieqd 3878 . . . . 5 (𝑥 = 𝐶 (𝐵 ∩ 𝒫 (𝑥𝑦)) = (𝐵 ∩ 𝒫 (𝐶𝑦)))
73, 6sseq12d 3235 . . . 4 (𝑥 = 𝐶 → ((𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ (𝐶𝑦) ⊆ (𝐵 ∩ 𝒫 (𝐶𝑦))))
8 ineq2 3379 . . . . 5 (𝑦 = 𝐷 → (𝐶𝑦) = (𝐶𝐷))
98pweqd 3634 . . . . . . 7 (𝑦 = 𝐷 → 𝒫 (𝐶𝑦) = 𝒫 (𝐶𝐷))
109ineq2d 3385 . . . . . 6 (𝑦 = 𝐷 → (𝐵 ∩ 𝒫 (𝐶𝑦)) = (𝐵 ∩ 𝒫 (𝐶𝐷)))
1110unieqd 3878 . . . . 5 (𝑦 = 𝐷 (𝐵 ∩ 𝒫 (𝐶𝑦)) = (𝐵 ∩ 𝒫 (𝐶𝐷)))
128, 11sseq12d 3235 . . . 4 (𝑦 = 𝐷 → ((𝐶𝑦) ⊆ (𝐵 ∩ 𝒫 (𝐶𝑦)) ↔ (𝐶𝐷) ⊆ (𝐵 ∩ 𝒫 (𝐶𝐷))))
137, 12rspc2v 2900 . . 3 ((𝐶𝐵𝐷𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) → (𝐶𝐷) ⊆ (𝐵 ∩ 𝒫 (𝐶𝐷))))
142, 13syl5com 29 . 2 (𝐵 ∈ TopBases → ((𝐶𝐵𝐷𝐵) → (𝐶𝐷) ⊆ (𝐵 ∩ 𝒫 (𝐶𝐷))))
15143impib 1206 1 ((𝐵 ∈ TopBases ∧ 𝐶𝐵𝐷𝐵) → (𝐶𝐷) ⊆ (𝐵 ∩ 𝒫 (𝐶𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  wral 2488  cin 3176  wss 3177  𝒫 cpw 3629   cuni 3867  TopBasesctb 14681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-in 3183  df-ss 3190  df-pw 3631  df-uni 3868  df-bases 14682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator