![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inopn | GIF version |
Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
inopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg 13976 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | |
2 | 1 | ibi 176 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
3 | 2 | simprd 114 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽) |
4 | ineq1 3344 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝑦)) | |
5 | 4 | eleq1d 2258 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝑦) ∈ 𝐽 ↔ (𝐴 ∩ 𝑦) ∈ 𝐽)) |
6 | ineq2 3345 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ∩ 𝑦) = (𝐴 ∩ 𝐵)) | |
7 | 6 | eleq1d 2258 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∩ 𝑦) ∈ 𝐽 ↔ (𝐴 ∩ 𝐵) ∈ 𝐽)) |
8 | 5, 7 | rspc2v 2869 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽 → (𝐴 ∩ 𝐵) ∈ 𝐽)) |
9 | 3, 8 | syl5com 29 | . 2 ⊢ (𝐽 ∈ Top → ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽)) |
10 | 9 | 3impib 1203 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∀wal 1362 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ∩ cin 3143 ⊆ wss 3144 ∪ cuni 3824 Topctop 13974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-v 2754 df-in 3150 df-ss 3157 df-pw 3592 df-top 13975 |
This theorem is referenced by: tgclb 14042 topbas 14044 difopn 14085 uncld 14090 ntrin 14101 innei 14140 restopnb 14158 cnptoprest 14216 txcnp 14248 txcnmpt 14250 mopnin 14464 |
Copyright terms: Public domain | W3C validator |