![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > m1p1sr | GIF version |
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) |
Ref | Expression |
---|---|
m1p1sr | ⊢ (-1R +R 1R) = 0R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-m1r 7795 | . . 3 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
2 | df-1r 7794 | . . 3 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
3 | 1, 2 | oveq12i 5931 | . 2 ⊢ (-1R +R 1R) = ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) |
4 | df-0r 7793 | . . 3 ⊢ 0R = [〈1P, 1P〉] ~R | |
5 | 1pr 7616 | . . . . 5 ⊢ 1P ∈ P | |
6 | addclpr 7599 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
7 | 5, 5, 6 | mp2an 426 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
8 | addsrpr 7807 | . . . . 5 ⊢ (((1P ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ) | |
9 | 5, 7, 7, 5, 8 | mp4an 427 | . . . 4 ⊢ ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R |
10 | addassprg 7641 | . . . . . . 7 ⊢ ((1P ∈ P ∧ 1P ∈ P ∧ 1P ∈ P) → ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P))) | |
11 | 5, 5, 5, 10 | mp3an 1348 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P)) |
12 | 11 | oveq2i 5930 | . . . . 5 ⊢ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))) |
13 | addclpr 7599 | . . . . . . 7 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) ∈ P) | |
14 | 5, 7, 13 | mp2an 426 | . . . . . 6 ⊢ (1P +P (1P +P 1P)) ∈ P |
15 | addclpr 7599 | . . . . . . 7 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → ((1P +P 1P) +P 1P) ∈ P) | |
16 | 7, 5, 15 | mp2an 426 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) ∈ P |
17 | enreceq 7798 | . . . . . 6 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ ((1P +P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) +P 1P) ∈ P)) → ([〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))))) | |
18 | 5, 5, 14, 16, 17 | mp4an 427 | . . . . 5 ⊢ ([〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))) |
19 | 12, 18 | mpbir 146 | . . . 4 ⊢ [〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R |
20 | 9, 19 | eqtr4i 2217 | . . 3 ⊢ ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈1P, 1P〉] ~R |
21 | 4, 20 | eqtr4i 2217 | . 2 ⊢ 0R = ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) |
22 | 3, 21 | eqtr4i 2217 | 1 ⊢ (-1R +R 1R) = 0R |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 〈cop 3622 (class class class)co 5919 [cec 6587 Pcnp 7353 1Pc1p 7354 +P cpp 7355 ~R cer 7358 0Rc0r 7360 1Rc1r 7361 -1Rcm1r 7362 +R cplr 7363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-2o 6472 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-enq0 7486 df-nq0 7487 df-0nq0 7488 df-plq0 7489 df-mq0 7490 df-inp 7528 df-i1p 7529 df-iplp 7530 df-enr 7788 df-nr 7789 df-plr 7790 df-0r 7793 df-1r 7794 df-m1r 7795 |
This theorem is referenced by: pn0sr 7833 ltm1sr 7839 caucvgsrlemoffres 7862 caucvgsr 7864 suplocsrlempr 7869 axi2m1 7937 |
Copyright terms: Public domain | W3C validator |