ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1p1sr GIF version

Theorem m1p1sr 7947
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.)
Assertion
Ref Expression
m1p1sr (-1R +R 1R) = 0R

Proof of Theorem m1p1sr
StepHypRef Expression
1 df-m1r 7920 . . 3 -1R = [⟨1P, (1P +P 1P)⟩] ~R
2 df-1r 7919 . . 3 1R = [⟨(1P +P 1P), 1P⟩] ~R
31, 2oveq12i 6013 . 2 (-1R +R 1R) = ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R )
4 df-0r 7918 . . 3 0R = [⟨1P, 1P⟩] ~R
5 1pr 7741 . . . . 5 1PP
6 addclpr 7724 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
75, 5, 6mp2an 426 . . . . 5 (1P +P 1P) ∈ P
8 addsrpr 7932 . . . . 5 (((1PP ∧ (1P +P 1P) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R )
95, 7, 7, 5, 8mp4an 427 . . . 4 ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R
10 addassprg 7766 . . . . . . 7 ((1PP ∧ 1PP ∧ 1PP) → ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P)))
115, 5, 5, 10mp3an 1371 . . . . . 6 ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P))
1211oveq2i 6012 . . . . 5 (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))
13 addclpr 7724 . . . . . . 7 ((1PP ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) ∈ P)
145, 7, 13mp2an 426 . . . . . 6 (1P +P (1P +P 1P)) ∈ P
15 addclpr 7724 . . . . . . 7 (((1P +P 1P) ∈ P ∧ 1PP) → ((1P +P 1P) +P 1P) ∈ P)
167, 5, 15mp2an 426 . . . . . 6 ((1P +P 1P) +P 1P) ∈ P
17 enreceq 7923 . . . . . 6 (((1PP ∧ 1PP) ∧ ((1P +P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) +P 1P) ∈ P)) → ([⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))))
185, 5, 14, 16, 17mp4an 427 . . . . 5 ([⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))))
1912, 18mpbir 146 . . . 4 [⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R
209, 19eqtr4i 2253 . . 3 ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨1P, 1P⟩] ~R
214, 20eqtr4i 2253 . 2 0R = ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R )
223, 21eqtr4i 2253 1 (-1R +R 1R) = 0R
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wcel 2200  cop 3669  (class class class)co 6001  [cec 6678  Pcnp 7478  1Pc1p 7479   +P cpp 7480   ~R cer 7483  0Rc0r 7485  1Rc1r 7486  -1Rcm1r 7487   +R cplr 7488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-i1p 7654  df-iplp 7655  df-enr 7913  df-nr 7914  df-plr 7915  df-0r 7918  df-1r 7919  df-m1r 7920
This theorem is referenced by:  pn0sr  7958  ltm1sr  7964  caucvgsrlemoffres  7987  caucvgsr  7989  suplocsrlempr  7994  axi2m1  8062
  Copyright terms: Public domain W3C validator