ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsub4i GIF version

Theorem addsub4i 8185
Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 17-Oct-1999.)
Hypotheses
Ref Expression
negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
subadd.3 𝐶 ∈ ℂ
addsub4i.4 𝐷 ∈ ℂ
Assertion
Ref Expression
addsub4i ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴𝐶) + (𝐵𝐷))

Proof of Theorem addsub4i
StepHypRef Expression
1 negidi.1 . 2 𝐴 ∈ ℂ
2 pncan3i.2 . 2 𝐵 ∈ ℂ
3 subadd.3 . 2 𝐶 ∈ ℂ
4 addsub4i.4 . 2 𝐷 ∈ ℂ
5 addsub4 8132 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴𝐶) + (𝐵𝐷)))
61, 2, 3, 4, 5mp4an 424 1 ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴𝐶) + (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:   = wceq 1342  wcel 2135  (class class class)co 5836  cc 7742   + caddc 7747  cmin 8060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-setind 4508  ax-resscn 7836  ax-1cn 7837  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-sub 8062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator