ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1m1sr GIF version

Theorem m1m1sr 7874
Description: Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
m1m1sr (-1R ·R -1R) = 1R

Proof of Theorem m1m1sr
StepHypRef Expression
1 df-m1r 7846 . . 3 -1R = [⟨1P, (1P +P 1P)⟩] ~R
21, 1oveq12i 5956 . 2 (-1R ·R -1R) = ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R )
3 df-1r 7845 . . 3 1R = [⟨(1P +P 1P), 1P⟩] ~R
4 1pr 7667 . . . . 5 1PP
5 addclpr 7650 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
64, 4, 5mp2an 426 . . . . 5 (1P +P 1P) ∈ P
7 mulsrpr 7859 . . . . 5 (((1PP ∧ (1P +P 1P) ∈ P) ∧ (1PP ∧ (1P +P 1P) ∈ P)) → ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R )
84, 6, 4, 6, 7mp4an 427 . . . 4 ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R
9 mulclpr 7685 . . . . . . . . 9 ((1PP ∧ (1P +P 1P) ∈ P) → (1P ·P (1P +P 1P)) ∈ P)
104, 6, 9mp2an 426 . . . . . . . 8 (1P ·P (1P +P 1P)) ∈ P
11 mulclpr 7685 . . . . . . . . 9 (((1P +P 1P) ∈ P ∧ 1PP) → ((1P +P 1P) ·P 1P) ∈ P)
126, 4, 11mp2an 426 . . . . . . . 8 ((1P +P 1P) ·P 1P) ∈ P
13 addclpr 7650 . . . . . . . 8 (((1P ·P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) ·P 1P) ∈ P) → ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P)
1410, 12, 13mp2an 426 . . . . . . 7 ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P
15 addassprg 7692 . . . . . . 7 ((1PP ∧ 1PP ∧ ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P) → ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)))))
164, 4, 14, 15mp3an 1350 . . . . . 6 ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))))
17 1idpr 7705 . . . . . . . . 9 (1PP → (1P ·P 1P) = 1P)
184, 17ax-mp 5 . . . . . . . 8 (1P ·P 1P) = 1P
19 distrprg 7701 . . . . . . . . . 10 (((1P +P 1P) ∈ P ∧ 1PP ∧ 1PP) → ((1P +P 1P) ·P (1P +P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P)))
206, 4, 4, 19mp3an 1350 . . . . . . . . 9 ((1P +P 1P) ·P (1P +P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P))
21 mulcomprg 7693 . . . . . . . . . . 11 ((1PP ∧ (1P +P 1P) ∈ P) → (1P ·P (1P +P 1P)) = ((1P +P 1P) ·P 1P))
224, 6, 21mp2an 426 . . . . . . . . . 10 (1P ·P (1P +P 1P)) = ((1P +P 1P) ·P 1P)
2322oveq1i 5954 . . . . . . . . 9 ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P))
2420, 23eqtr4i 2229 . . . . . . . 8 ((1P +P 1P) ·P (1P +P 1P)) = ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))
2518, 24oveq12i 5956 . . . . . . 7 ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) = (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)))
2625oveq2i 5955 . . . . . 6 (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P)))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))))
2716, 26eqtr4i 2229 . . . . 5 ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))))
28 mulclpr 7685 . . . . . . . 8 ((1PP ∧ 1PP) → (1P ·P 1P) ∈ P)
294, 4, 28mp2an 426 . . . . . . 7 (1P ·P 1P) ∈ P
30 mulclpr 7685 . . . . . . . 8 (((1P +P 1P) ∈ P ∧ (1P +P 1P) ∈ P) → ((1P +P 1P) ·P (1P +P 1P)) ∈ P)
316, 6, 30mp2an 426 . . . . . . 7 ((1P +P 1P) ·P (1P +P 1P)) ∈ P
32 addclpr 7650 . . . . . . 7 (((1P ·P 1P) ∈ P ∧ ((1P +P 1P) ·P (1P +P 1P)) ∈ P) → ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P)
3329, 31, 32mp2an 426 . . . . . 6 ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P
34 enreceq 7849 . . . . . 6 ((((1P +P 1P) ∈ P ∧ 1PP) ∧ (((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P ∧ ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P)) → ([⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R ↔ ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))))))
356, 4, 33, 14, 34mp4an 427 . . . . 5 ([⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R ↔ ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P)))))
3627, 35mpbir 146 . . . 4 [⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R
378, 36eqtr4i 2229 . . 3 ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨(1P +P 1P), 1P⟩] ~R
383, 37eqtr4i 2229 . 2 1R = ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R )
392, 38eqtr4i 2229 1 (-1R ·R -1R) = 1R
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2176  cop 3636  (class class class)co 5944  [cec 6618  Pcnp 7404  1Pc1p 7405   +P cpp 7406   ·P cmp 7407   ~R cer 7409  1Rc1r 7412  -1Rcm1r 7413   ·R cmr 7415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-i1p 7580  df-iplp 7581  df-imp 7582  df-enr 7839  df-nr 7840  df-mr 7842  df-1r 7845  df-m1r 7846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator