ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1m1sr GIF version

Theorem m1m1sr 7702
Description: Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
m1m1sr (-1R ·R -1R) = 1R

Proof of Theorem m1m1sr
StepHypRef Expression
1 df-m1r 7674 . . 3 -1R = [⟨1P, (1P +P 1P)⟩] ~R
21, 1oveq12i 5854 . 2 (-1R ·R -1R) = ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R )
3 df-1r 7673 . . 3 1R = [⟨(1P +P 1P), 1P⟩] ~R
4 1pr 7495 . . . . 5 1PP
5 addclpr 7478 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
64, 4, 5mp2an 423 . . . . 5 (1P +P 1P) ∈ P
7 mulsrpr 7687 . . . . 5 (((1PP ∧ (1P +P 1P) ∈ P) ∧ (1PP ∧ (1P +P 1P) ∈ P)) → ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R )
84, 6, 4, 6, 7mp4an 424 . . . 4 ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R
9 mulclpr 7513 . . . . . . . . 9 ((1PP ∧ (1P +P 1P) ∈ P) → (1P ·P (1P +P 1P)) ∈ P)
104, 6, 9mp2an 423 . . . . . . . 8 (1P ·P (1P +P 1P)) ∈ P
11 mulclpr 7513 . . . . . . . . 9 (((1P +P 1P) ∈ P ∧ 1PP) → ((1P +P 1P) ·P 1P) ∈ P)
126, 4, 11mp2an 423 . . . . . . . 8 ((1P +P 1P) ·P 1P) ∈ P
13 addclpr 7478 . . . . . . . 8 (((1P ·P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) ·P 1P) ∈ P) → ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P)
1410, 12, 13mp2an 423 . . . . . . 7 ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P
15 addassprg 7520 . . . . . . 7 ((1PP ∧ 1PP ∧ ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P) → ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)))))
164, 4, 14, 15mp3an 1327 . . . . . 6 ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))))
17 1idpr 7533 . . . . . . . . 9 (1PP → (1P ·P 1P) = 1P)
184, 17ax-mp 5 . . . . . . . 8 (1P ·P 1P) = 1P
19 distrprg 7529 . . . . . . . . . 10 (((1P +P 1P) ∈ P ∧ 1PP ∧ 1PP) → ((1P +P 1P) ·P (1P +P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P)))
206, 4, 4, 19mp3an 1327 . . . . . . . . 9 ((1P +P 1P) ·P (1P +P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P))
21 mulcomprg 7521 . . . . . . . . . . 11 ((1PP ∧ (1P +P 1P) ∈ P) → (1P ·P (1P +P 1P)) = ((1P +P 1P) ·P 1P))
224, 6, 21mp2an 423 . . . . . . . . . 10 (1P ·P (1P +P 1P)) = ((1P +P 1P) ·P 1P)
2322oveq1i 5852 . . . . . . . . 9 ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P))
2420, 23eqtr4i 2189 . . . . . . . 8 ((1P +P 1P) ·P (1P +P 1P)) = ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))
2518, 24oveq12i 5854 . . . . . . 7 ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) = (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)))
2625oveq2i 5853 . . . . . 6 (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P)))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))))
2716, 26eqtr4i 2189 . . . . 5 ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))))
28 mulclpr 7513 . . . . . . . 8 ((1PP ∧ 1PP) → (1P ·P 1P) ∈ P)
294, 4, 28mp2an 423 . . . . . . 7 (1P ·P 1P) ∈ P
30 mulclpr 7513 . . . . . . . 8 (((1P +P 1P) ∈ P ∧ (1P +P 1P) ∈ P) → ((1P +P 1P) ·P (1P +P 1P)) ∈ P)
316, 6, 30mp2an 423 . . . . . . 7 ((1P +P 1P) ·P (1P +P 1P)) ∈ P
32 addclpr 7478 . . . . . . 7 (((1P ·P 1P) ∈ P ∧ ((1P +P 1P) ·P (1P +P 1P)) ∈ P) → ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P)
3329, 31, 32mp2an 423 . . . . . 6 ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P
34 enreceq 7677 . . . . . 6 ((((1P +P 1P) ∈ P ∧ 1PP) ∧ (((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P ∧ ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P)) → ([⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R ↔ ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))))))
356, 4, 33, 14, 34mp4an 424 . . . . 5 ([⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R ↔ ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P)))))
3627, 35mpbir 145 . . . 4 [⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R
378, 36eqtr4i 2189 . . 3 ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨(1P +P 1P), 1P⟩] ~R
383, 37eqtr4i 2189 . 2 1R = ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R )
392, 38eqtr4i 2189 1 (-1R ·R -1R) = 1R
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  wcel 2136  cop 3579  (class class class)co 5842  [cec 6499  Pcnp 7232  1Pc1p 7233   +P cpp 7234   ·P cmp 7235   ~R cer 7237  1Rc1r 7240  -1Rcm1r 7241   ·R cmr 7243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-enr 7667  df-nr 7668  df-mr 7670  df-1r 7673  df-m1r 7674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator