Proof of Theorem m1m1sr
Step | Hyp | Ref
| Expression |
1 | | df-m1r 7695 |
. . 3
⊢
-1R = [〈1P,
(1P +P
1P)〉]
~R |
2 | 1, 1 | oveq12i 5865 |
. 2
⊢
(-1R ·R
-1R) = ([〈1P,
(1P +P
1P)〉] ~R
·R [〈1P,
(1P +P
1P)〉] ~R
) |
3 | | df-1r 7694 |
. . 3
⊢
1R = [〈(1P
+P 1P),
1P〉] ~R |
4 | | 1pr 7516 |
. . . . 5
⊢
1P ∈ P |
5 | | addclpr 7499 |
. . . . . 6
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) |
6 | 4, 4, 5 | mp2an 424 |
. . . . 5
⊢
(1P +P
1P) ∈ P |
7 | | mulsrpr 7708 |
. . . . 5
⊢
(((1P ∈ P ∧
(1P +P
1P) ∈ P) ∧
(1P ∈ P ∧
(1P +P
1P) ∈ P)) →
([〈1P, (1P
+P 1P)〉]
~R ·R
[〈1P, (1P
+P 1P)〉]
~R ) = [〈((1P
·P 1P)
+P ((1P
+P 1P)
·P (1P
+P 1P))),
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P))〉] ~R
) |
8 | 4, 6, 4, 6, 7 | mp4an 425 |
. . . 4
⊢
([〈1P, (1P
+P 1P)〉]
~R ·R
[〈1P, (1P
+P 1P)〉]
~R ) = [〈((1P
·P 1P)
+P ((1P
+P 1P)
·P (1P
+P 1P))),
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P))〉]
~R |
9 | | mulclpr 7534 |
. . . . . . . . 9
⊢
((1P ∈ P ∧
(1P +P
1P) ∈ P) →
(1P ·P
(1P +P
1P)) ∈ P) |
10 | 4, 6, 9 | mp2an 424 |
. . . . . . . 8
⊢
(1P ·P
(1P +P
1P)) ∈ P |
11 | | mulclpr 7534 |
. . . . . . . . 9
⊢
(((1P +P
1P) ∈ P ∧
1P ∈ P) →
((1P +P
1P) ·P
1P) ∈ P) |
12 | 6, 4, 11 | mp2an 424 |
. . . . . . . 8
⊢
((1P +P
1P) ·P
1P) ∈ P |
13 | | addclpr 7499 |
. . . . . . . 8
⊢
(((1P ·P
(1P +P
1P)) ∈ P ∧
((1P +P
1P) ·P
1P) ∈ P) →
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P)) ∈ P) |
14 | 10, 12, 13 | mp2an 424 |
. . . . . . 7
⊢
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P)) ∈ P |
15 | | addassprg 7541 |
. . . . . . 7
⊢
((1P ∈ P ∧
1P ∈ P ∧
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P)) ∈ P) →
((1P +P
1P) +P
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P))) = (1P
+P (1P
+P ((1P
·P (1P
+P 1P))
+P ((1P
+P 1P)
·P
1P))))) |
16 | 4, 4, 14, 15 | mp3an 1332 |
. . . . . 6
⊢
((1P +P
1P) +P
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P))) = (1P
+P (1P
+P ((1P
·P (1P
+P 1P))
+P ((1P
+P 1P)
·P
1P)))) |
17 | | 1idpr 7554 |
. . . . . . . . 9
⊢
(1P ∈ P →
(1P ·P
1P) = 1P) |
18 | 4, 17 | ax-mp 5 |
. . . . . . . 8
⊢
(1P ·P
1P) = 1P |
19 | | distrprg 7550 |
. . . . . . . . . 10
⊢
(((1P +P
1P) ∈ P ∧
1P ∈ P ∧
1P ∈ P) →
((1P +P
1P) ·P
(1P +P
1P)) = (((1P
+P 1P)
·P 1P)
+P ((1P
+P 1P)
·P
1P))) |
20 | 6, 4, 4, 19 | mp3an 1332 |
. . . . . . . . 9
⊢
((1P +P
1P) ·P
(1P +P
1P)) = (((1P
+P 1P)
·P 1P)
+P ((1P
+P 1P)
·P
1P)) |
21 | | mulcomprg 7542 |
. . . . . . . . . . 11
⊢
((1P ∈ P ∧
(1P +P
1P) ∈ P) →
(1P ·P
(1P +P
1P)) = ((1P
+P 1P)
·P
1P)) |
22 | 4, 6, 21 | mp2an 424 |
. . . . . . . . . 10
⊢
(1P ·P
(1P +P
1P)) = ((1P
+P 1P)
·P
1P) |
23 | 22 | oveq1i 5863 |
. . . . . . . . 9
⊢
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P)) = (((1P
+P 1P)
·P 1P)
+P ((1P
+P 1P)
·P
1P)) |
24 | 20, 23 | eqtr4i 2194 |
. . . . . . . 8
⊢
((1P +P
1P) ·P
(1P +P
1P)) = ((1P
·P (1P
+P 1P))
+P ((1P
+P 1P)
·P
1P)) |
25 | 18, 24 | oveq12i 5865 |
. . . . . . 7
⊢
((1P ·P
1P) +P
((1P +P
1P) ·P
(1P +P
1P))) = (1P
+P ((1P
·P (1P
+P 1P))
+P ((1P
+P 1P)
·P
1P))) |
26 | 25 | oveq2i 5864 |
. . . . . 6
⊢
(1P +P
((1P ·P
1P) +P
((1P +P
1P) ·P
(1P +P
1P)))) = (1P
+P (1P
+P ((1P
·P (1P
+P 1P))
+P ((1P
+P 1P)
·P
1P)))) |
27 | 16, 26 | eqtr4i 2194 |
. . . . 5
⊢
((1P +P
1P) +P
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P))) = (1P
+P ((1P
·P 1P)
+P ((1P
+P 1P)
·P (1P
+P 1P)))) |
28 | | mulclpr 7534 |
. . . . . . . 8
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P ·P
1P) ∈ P) |
29 | 4, 4, 28 | mp2an 424 |
. . . . . . 7
⊢
(1P ·P
1P) ∈ P |
30 | | mulclpr 7534 |
. . . . . . . 8
⊢
(((1P +P
1P) ∈ P ∧
(1P +P
1P) ∈ P) →
((1P +P
1P) ·P
(1P +P
1P)) ∈ P) |
31 | 6, 6, 30 | mp2an 424 |
. . . . . . 7
⊢
((1P +P
1P) ·P
(1P +P
1P)) ∈ P |
32 | | addclpr 7499 |
. . . . . . 7
⊢
(((1P ·P
1P) ∈ P ∧
((1P +P
1P) ·P
(1P +P
1P)) ∈ P) →
((1P ·P
1P) +P
((1P +P
1P) ·P
(1P +P
1P))) ∈ P) |
33 | 29, 31, 32 | mp2an 424 |
. . . . . 6
⊢
((1P ·P
1P) +P
((1P +P
1P) ·P
(1P +P
1P))) ∈ P |
34 | | enreceq 7698 |
. . . . . 6
⊢
((((1P +P
1P) ∈ P ∧
1P ∈ P) ∧
(((1P ·P
1P) +P
((1P +P
1P) ·P
(1P +P
1P))) ∈ P ∧
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P)) ∈ P)) →
([〈(1P +P
1P), 1P〉]
~R = [〈((1P
·P 1P)
+P ((1P
+P 1P)
·P (1P
+P 1P))),
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P))〉] ~R ↔
((1P +P
1P) +P
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P))) = (1P
+P ((1P
·P 1P)
+P ((1P
+P 1P)
·P (1P
+P 1P)))))) |
35 | 6, 4, 33, 14, 34 | mp4an 425 |
. . . . 5
⊢
([〈(1P +P
1P), 1P〉]
~R = [〈((1P
·P 1P)
+P ((1P
+P 1P)
·P (1P
+P 1P))),
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P))〉] ~R ↔
((1P +P
1P) +P
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P))) = (1P
+P ((1P
·P 1P)
+P ((1P
+P 1P)
·P (1P
+P 1P))))) |
36 | 27, 35 | mpbir 145 |
. . . 4
⊢
[〈(1P +P
1P), 1P〉]
~R = [〈((1P
·P 1P)
+P ((1P
+P 1P)
·P (1P
+P 1P))),
((1P ·P
(1P +P
1P)) +P
((1P +P
1P) ·P
1P))〉]
~R |
37 | 8, 36 | eqtr4i 2194 |
. . 3
⊢
([〈1P, (1P
+P 1P)〉]
~R ·R
[〈1P, (1P
+P 1P)〉]
~R ) = [〈(1P
+P 1P),
1P〉] ~R |
38 | 3, 37 | eqtr4i 2194 |
. 2
⊢
1R = ([〈1P,
(1P +P
1P)〉] ~R
·R [〈1P,
(1P +P
1P)〉] ~R
) |
39 | 2, 38 | eqtr4i 2194 |
1
⊢
(-1R ·R
-1R) = 1R |