ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1m1sr GIF version

Theorem m1m1sr 7909
Description: Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
m1m1sr (-1R ·R -1R) = 1R

Proof of Theorem m1m1sr
StepHypRef Expression
1 df-m1r 7881 . . 3 -1R = [⟨1P, (1P +P 1P)⟩] ~R
21, 1oveq12i 5979 . 2 (-1R ·R -1R) = ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R )
3 df-1r 7880 . . 3 1R = [⟨(1P +P 1P), 1P⟩] ~R
4 1pr 7702 . . . . 5 1PP
5 addclpr 7685 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
64, 4, 5mp2an 426 . . . . 5 (1P +P 1P) ∈ P
7 mulsrpr 7894 . . . . 5 (((1PP ∧ (1P +P 1P) ∈ P) ∧ (1PP ∧ (1P +P 1P) ∈ P)) → ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R )
84, 6, 4, 6, 7mp4an 427 . . . 4 ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R
9 mulclpr 7720 . . . . . . . . 9 ((1PP ∧ (1P +P 1P) ∈ P) → (1P ·P (1P +P 1P)) ∈ P)
104, 6, 9mp2an 426 . . . . . . . 8 (1P ·P (1P +P 1P)) ∈ P
11 mulclpr 7720 . . . . . . . . 9 (((1P +P 1P) ∈ P ∧ 1PP) → ((1P +P 1P) ·P 1P) ∈ P)
126, 4, 11mp2an 426 . . . . . . . 8 ((1P +P 1P) ·P 1P) ∈ P
13 addclpr 7685 . . . . . . . 8 (((1P ·P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) ·P 1P) ∈ P) → ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P)
1410, 12, 13mp2an 426 . . . . . . 7 ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P
15 addassprg 7727 . . . . . . 7 ((1PP ∧ 1PP ∧ ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P) → ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)))))
164, 4, 14, 15mp3an 1350 . . . . . 6 ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))))
17 1idpr 7740 . . . . . . . . 9 (1PP → (1P ·P 1P) = 1P)
184, 17ax-mp 5 . . . . . . . 8 (1P ·P 1P) = 1P
19 distrprg 7736 . . . . . . . . . 10 (((1P +P 1P) ∈ P ∧ 1PP ∧ 1PP) → ((1P +P 1P) ·P (1P +P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P)))
206, 4, 4, 19mp3an 1350 . . . . . . . . 9 ((1P +P 1P) ·P (1P +P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P))
21 mulcomprg 7728 . . . . . . . . . . 11 ((1PP ∧ (1P +P 1P) ∈ P) → (1P ·P (1P +P 1P)) = ((1P +P 1P) ·P 1P))
224, 6, 21mp2an 426 . . . . . . . . . 10 (1P ·P (1P +P 1P)) = ((1P +P 1P) ·P 1P)
2322oveq1i 5977 . . . . . . . . 9 ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P))
2420, 23eqtr4i 2231 . . . . . . . 8 ((1P +P 1P) ·P (1P +P 1P)) = ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))
2518, 24oveq12i 5979 . . . . . . 7 ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) = (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)))
2625oveq2i 5978 . . . . . 6 (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P)))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))))
2716, 26eqtr4i 2231 . . . . 5 ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))))
28 mulclpr 7720 . . . . . . . 8 ((1PP ∧ 1PP) → (1P ·P 1P) ∈ P)
294, 4, 28mp2an 426 . . . . . . 7 (1P ·P 1P) ∈ P
30 mulclpr 7720 . . . . . . . 8 (((1P +P 1P) ∈ P ∧ (1P +P 1P) ∈ P) → ((1P +P 1P) ·P (1P +P 1P)) ∈ P)
316, 6, 30mp2an 426 . . . . . . 7 ((1P +P 1P) ·P (1P +P 1P)) ∈ P
32 addclpr 7685 . . . . . . 7 (((1P ·P 1P) ∈ P ∧ ((1P +P 1P) ·P (1P +P 1P)) ∈ P) → ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P)
3329, 31, 32mp2an 426 . . . . . 6 ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P
34 enreceq 7884 . . . . . 6 ((((1P +P 1P) ∈ P ∧ 1PP) ∧ (((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P ∧ ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P)) → ([⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R ↔ ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))))))
356, 4, 33, 14, 34mp4an 427 . . . . 5 ([⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R ↔ ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P)))))
3627, 35mpbir 146 . . . 4 [⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R
378, 36eqtr4i 2231 . . 3 ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨(1P +P 1P), 1P⟩] ~R
383, 37eqtr4i 2231 . 2 1R = ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R )
392, 38eqtr4i 2231 1 (-1R ·R -1R) = 1R
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2178  cop 3646  (class class class)co 5967  [cec 6641  Pcnp 7439  1Pc1p 7440   +P cpp 7441   ·P cmp 7442   ~R cer 7444  1Rc1r 7447  -1Rcm1r 7448   ·R cmr 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-imp 7617  df-enr 7874  df-nr 7875  df-mr 7877  df-1r 7880  df-m1r 7881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator