![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cos0pilt1 | GIF version |
Description: Cosine is between minus one and one on the open interval between zero and ฯ. (Contributed by Jim Kingdon, 7-May-2024.) |
Ref | Expression |
---|---|
cos0pilt1 | โข (๐ด โ (0(,)ฯ) โ (cosโ๐ด) โ (-1(,)1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 9914 | . . 3 โข (๐ด โ (0(,)ฯ) โ ๐ด โ โ) | |
2 | 1 | recoscld 11734 | . 2 โข (๐ด โ (0(,)ฯ) โ (cosโ๐ด) โ โ) |
3 | cospi 14306 | . . 3 โข (cosโฯ) = -1 | |
4 | ioossicc 9961 | . . . . 5 โข (0(,)ฯ) โ (0[,]ฯ) | |
5 | 4 | sseli 3153 | . . . 4 โข (๐ด โ (0(,)ฯ) โ ๐ด โ (0[,]ฯ)) |
6 | 0xr 8006 | . . . . . 6 โข 0 โ โ* | |
7 | pire 14292 | . . . . . . 7 โข ฯ โ โ | |
8 | 7 | rexri 8017 | . . . . . 6 โข ฯ โ โ* |
9 | 0re 7959 | . . . . . . 7 โข 0 โ โ | |
10 | pipos 14294 | . . . . . . 7 โข 0 < ฯ | |
11 | 9, 7, 10 | ltleii 8062 | . . . . . 6 โข 0 โค ฯ |
12 | ubicc2 9987 | . . . . . 6 โข ((0 โ โ* โง ฯ โ โ* โง 0 โค ฯ) โ ฯ โ (0[,]ฯ)) | |
13 | 6, 8, 11, 12 | mp3an 1337 | . . . . 5 โข ฯ โ (0[,]ฯ) |
14 | 13 | a1i 9 | . . . 4 โข (๐ด โ (0(,)ฯ) โ ฯ โ (0[,]ฯ)) |
15 | eliooord 9930 | . . . . 5 โข (๐ด โ (0(,)ฯ) โ (0 < ๐ด โง ๐ด < ฯ)) | |
16 | 15 | simprd 114 | . . . 4 โข (๐ด โ (0(,)ฯ) โ ๐ด < ฯ) |
17 | 5, 14, 16 | cosordlem 14355 | . . 3 โข (๐ด โ (0(,)ฯ) โ (cosโฯ) < (cosโ๐ด)) |
18 | 3, 17 | eqbrtrrid 4041 | . 2 โข (๐ด โ (0(,)ฯ) โ -1 < (cosโ๐ด)) |
19 | 2re 8991 | . . . . . . 7 โข 2 โ โ | |
20 | 19, 7 | remulcli 7973 | . . . . . 6 โข (2 ยท ฯ) โ โ |
21 | 20 | rexri 8017 | . . . . 5 โข (2 ยท ฯ) โ โ* |
22 | 1le2 9129 | . . . . . 6 โข 1 โค 2 | |
23 | lemulge12 8826 | . . . . . 6 โข (((ฯ โ โ โง 2 โ โ) โง (0 โค ฯ โง 1 โค 2)) โ ฯ โค (2 ยท ฯ)) | |
24 | 7, 19, 11, 22, 23 | mp4an 427 | . . . . 5 โข ฯ โค (2 ยท ฯ) |
25 | iooss2 9919 | . . . . 5 โข (((2 ยท ฯ) โ โ* โง ฯ โค (2 ยท ฯ)) โ (0(,)ฯ) โ (0(,)(2 ยท ฯ))) | |
26 | 21, 24, 25 | mp2an 426 | . . . 4 โข (0(,)ฯ) โ (0(,)(2 ยท ฯ)) |
27 | 26 | sseli 3153 | . . 3 โข (๐ด โ (0(,)ฯ) โ ๐ด โ (0(,)(2 ยท ฯ))) |
28 | cos02pilt1 14357 | . . 3 โข (๐ด โ (0(,)(2 ยท ฯ)) โ (cosโ๐ด) < 1) | |
29 | 27, 28 | syl 14 | . 2 โข (๐ด โ (0(,)ฯ) โ (cosโ๐ด) < 1) |
30 | neg1rr 9027 | . . . 4 โข -1 โ โ | |
31 | 30 | rexri 8017 | . . 3 โข -1 โ โ* |
32 | 1re 7958 | . . . 4 โข 1 โ โ | |
33 | 32 | rexri 8017 | . . 3 โข 1 โ โ* |
34 | elioo2 9923 | . . 3 โข ((-1 โ โ* โง 1 โ โ*) โ ((cosโ๐ด) โ (-1(,)1) โ ((cosโ๐ด) โ โ โง -1 < (cosโ๐ด) โง (cosโ๐ด) < 1))) | |
35 | 31, 33, 34 | mp2an 426 | . 2 โข ((cosโ๐ด) โ (-1(,)1) โ ((cosโ๐ด) โ โ โง -1 < (cosโ๐ด) โง (cosโ๐ด) < 1)) |
36 | 2, 18, 29, 35 | syl3anbrc 1181 | 1 โข (๐ด โ (0(,)ฯ) โ (cosโ๐ด) โ (-1(,)1)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โ wb 105 โง w3a 978 โ wcel 2148 โ wss 3131 class class class wbr 4005 โcfv 5218 (class class class)co 5877 โcr 7812 0cc0 7813 1c1 7814 ยท cmul 7818 โ*cxr 7993 < clt 7994 โค cle 7995 -cneg 8131 2c2 8972 (,)cioo 9890 [,]cicc 9893 cosccos 11655 ฯcpi 11657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 ax-pre-suploc 7934 ax-addf 7935 ax-mulf 7936 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-disj 3983 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-of 6085 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-map 6652 df-pm 6653 df-en 6743 df-dom 6744 df-fin 6745 df-sup 6985 df-inf 6986 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-9 8987 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-xneg 9774 df-xadd 9775 df-ioo 9894 df-ioc 9895 df-ico 9896 df-icc 9897 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-exp 10522 df-fac 10708 df-bc 10730 df-ihash 10758 df-shft 10826 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-sumdc 11364 df-ef 11658 df-sin 11660 df-cos 11661 df-pi 11663 df-rest 12695 df-topgen 12714 df-psmet 13532 df-xmet 13533 df-met 13534 df-bl 13535 df-mopn 13536 df-top 13583 df-topon 13596 df-bases 13628 df-ntr 13681 df-cn 13773 df-cnp 13774 df-tx 13838 df-cncf 14143 df-limced 14210 df-dvap 14211 |
This theorem is referenced by: ioocosf1o 14360 |
Copyright terms: Public domain | W3C validator |