Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cos0pilt1 | GIF version |
Description: Cosine is between minus one and one on the open interval between zero and π. (Contributed by Jim Kingdon, 7-May-2024.) |
Ref | Expression |
---|---|
cos0pilt1 | ⊢ (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 9856 | . . 3 ⊢ (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℝ) | |
2 | 1 | recoscld 11674 | . 2 ⊢ (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ ℝ) |
3 | cospi 13474 | . . 3 ⊢ (cos‘π) = -1 | |
4 | ioossicc 9903 | . . . . 5 ⊢ (0(,)π) ⊆ (0[,]π) | |
5 | 4 | sseli 3143 | . . . 4 ⊢ (𝐴 ∈ (0(,)π) → 𝐴 ∈ (0[,]π)) |
6 | 0xr 7953 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
7 | pire 13460 | . . . . . . 7 ⊢ π ∈ ℝ | |
8 | 7 | rexri 7964 | . . . . . 6 ⊢ π ∈ ℝ* |
9 | 0re 7907 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
10 | pipos 13462 | . . . . . . 7 ⊢ 0 < π | |
11 | 9, 7, 10 | ltleii 8009 | . . . . . 6 ⊢ 0 ≤ π |
12 | ubicc2 9929 | . . . . . 6 ⊢ ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π)) | |
13 | 6, 8, 11, 12 | mp3an 1332 | . . . . 5 ⊢ π ∈ (0[,]π) |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0(,)π) → π ∈ (0[,]π)) |
15 | eliooord 9872 | . . . . 5 ⊢ (𝐴 ∈ (0(,)π) → (0 < 𝐴 ∧ 𝐴 < π)) | |
16 | 15 | simprd 113 | . . . 4 ⊢ (𝐴 ∈ (0(,)π) → 𝐴 < π) |
17 | 5, 14, 16 | cosordlem 13523 | . . 3 ⊢ (𝐴 ∈ (0(,)π) → (cos‘π) < (cos‘𝐴)) |
18 | 3, 17 | eqbrtrrid 4023 | . 2 ⊢ (𝐴 ∈ (0(,)π) → -1 < (cos‘𝐴)) |
19 | 2re 8935 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
20 | 19, 7 | remulcli 7921 | . . . . . 6 ⊢ (2 · π) ∈ ℝ |
21 | 20 | rexri 7964 | . . . . 5 ⊢ (2 · π) ∈ ℝ* |
22 | 1le2 9073 | . . . . . 6 ⊢ 1 ≤ 2 | |
23 | lemulge12 8770 | . . . . . 6 ⊢ (((π ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ π ∧ 1 ≤ 2)) → π ≤ (2 · π)) | |
24 | 7, 19, 11, 22, 23 | mp4an 425 | . . . . 5 ⊢ π ≤ (2 · π) |
25 | iooss2 9861 | . . . . 5 ⊢ (((2 · π) ∈ ℝ* ∧ π ≤ (2 · π)) → (0(,)π) ⊆ (0(,)(2 · π))) | |
26 | 21, 24, 25 | mp2an 424 | . . . 4 ⊢ (0(,)π) ⊆ (0(,)(2 · π)) |
27 | 26 | sseli 3143 | . . 3 ⊢ (𝐴 ∈ (0(,)π) → 𝐴 ∈ (0(,)(2 · π))) |
28 | cos02pilt1 13525 | . . 3 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1) | |
29 | 27, 28 | syl 14 | . 2 ⊢ (𝐴 ∈ (0(,)π) → (cos‘𝐴) < 1) |
30 | neg1rr 8971 | . . . 4 ⊢ -1 ∈ ℝ | |
31 | 30 | rexri 7964 | . . 3 ⊢ -1 ∈ ℝ* |
32 | 1re 7906 | . . . 4 ⊢ 1 ∈ ℝ | |
33 | 32 | rexri 7964 | . . 3 ⊢ 1 ∈ ℝ* |
34 | elioo2 9865 | . . 3 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((cos‘𝐴) ∈ (-1(,)1) ↔ ((cos‘𝐴) ∈ ℝ ∧ -1 < (cos‘𝐴) ∧ (cos‘𝐴) < 1))) | |
35 | 31, 33, 34 | mp2an 424 | . 2 ⊢ ((cos‘𝐴) ∈ (-1(,)1) ↔ ((cos‘𝐴) ∈ ℝ ∧ -1 < (cos‘𝐴) ∧ (cos‘𝐴) < 1)) |
36 | 2, 18, 29, 35 | syl3anbrc 1176 | 1 ⊢ (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 973 ∈ wcel 2141 ⊆ wss 3121 class class class wbr 3987 ‘cfv 5196 (class class class)co 5850 ℝcr 7760 0cc0 7761 1c1 7762 · cmul 7766 ℝ*cxr 7940 < clt 7941 ≤ cle 7942 -cneg 8078 2c2 8916 (,)cioo 9832 [,]cicc 9835 cosccos 11595 πcpi 11597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 ax-pre-suploc 7882 ax-addf 7883 ax-mulf 7884 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-disj 3965 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-of 6058 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-frec 6367 df-1o 6392 df-oadd 6396 df-er 6509 df-map 6624 df-pm 6625 df-en 6715 df-dom 6716 df-fin 6717 df-sup 6957 df-inf 6958 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-5 8927 df-6 8928 df-7 8929 df-8 8930 df-9 8931 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-xneg 9716 df-xadd 9717 df-ioo 9836 df-ioc 9837 df-ico 9838 df-icc 9839 df-fz 9953 df-fzo 10086 df-seqfrec 10389 df-exp 10463 df-fac 10647 df-bc 10669 df-ihash 10697 df-shft 10766 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-clim 11229 df-sumdc 11304 df-ef 11598 df-sin 11600 df-cos 11601 df-pi 11603 df-rest 12568 df-topgen 12587 df-psmet 12740 df-xmet 12741 df-met 12742 df-bl 12743 df-mopn 12744 df-top 12749 df-topon 12762 df-bases 12794 df-ntr 12849 df-cn 12941 df-cnp 12942 df-tx 13006 df-cncf 13311 df-limced 13378 df-dvap 13379 |
This theorem is referenced by: ioocosf1o 13528 |
Copyright terms: Public domain | W3C validator |