ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos0pilt1 GIF version

Theorem cos0pilt1 13112
Description: Cosine is between minus one and one on the open interval between zero and π. (Contributed by Jim Kingdon, 7-May-2024.)
Assertion
Ref Expression
cos0pilt1 (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1))

Proof of Theorem cos0pilt1
StepHypRef Expression
1 elioore 9794 . . 3 (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℝ)
21recoscld 11598 . 2 (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ ℝ)
3 cospi 13060 . . 3 (cos‘π) = -1
4 ioossicc 9841 . . . . 5 (0(,)π) ⊆ (0[,]π)
54sseli 3120 . . . 4 (𝐴 ∈ (0(,)π) → 𝐴 ∈ (0[,]π))
6 0xr 7903 . . . . . 6 0 ∈ ℝ*
7 pire 13046 . . . . . . 7 π ∈ ℝ
87rexri 7914 . . . . . 6 π ∈ ℝ*
9 0re 7857 . . . . . . 7 0 ∈ ℝ
10 pipos 13048 . . . . . . 7 0 < π
119, 7, 10ltleii 7958 . . . . . 6 0 ≤ π
12 ubicc2 9867 . . . . . 6 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
136, 8, 11, 12mp3an 1316 . . . . 5 π ∈ (0[,]π)
1413a1i 9 . . . 4 (𝐴 ∈ (0(,)π) → π ∈ (0[,]π))
15 eliooord 9810 . . . . 5 (𝐴 ∈ (0(,)π) → (0 < 𝐴𝐴 < π))
1615simprd 113 . . . 4 (𝐴 ∈ (0(,)π) → 𝐴 < π)
175, 14, 16cosordlem 13109 . . 3 (𝐴 ∈ (0(,)π) → (cos‘π) < (cos‘𝐴))
183, 17eqbrtrrid 3996 . 2 (𝐴 ∈ (0(,)π) → -1 < (cos‘𝐴))
19 2re 8882 . . . . . . 7 2 ∈ ℝ
2019, 7remulcli 7871 . . . . . 6 (2 · π) ∈ ℝ
2120rexri 7914 . . . . 5 (2 · π) ∈ ℝ*
22 1le2 9020 . . . . . 6 1 ≤ 2
23 lemulge12 8717 . . . . . 6 (((π ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ π ∧ 1 ≤ 2)) → π ≤ (2 · π))
247, 19, 11, 22, 23mp4an 424 . . . . 5 π ≤ (2 · π)
25 iooss2 9799 . . . . 5 (((2 · π) ∈ ℝ* ∧ π ≤ (2 · π)) → (0(,)π) ⊆ (0(,)(2 · π)))
2621, 24, 25mp2an 423 . . . 4 (0(,)π) ⊆ (0(,)(2 · π))
2726sseli 3120 . . 3 (𝐴 ∈ (0(,)π) → 𝐴 ∈ (0(,)(2 · π)))
28 cos02pilt1 13111 . . 3 (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1)
2927, 28syl 14 . 2 (𝐴 ∈ (0(,)π) → (cos‘𝐴) < 1)
30 neg1rr 8918 . . . 4 -1 ∈ ℝ
3130rexri 7914 . . 3 -1 ∈ ℝ*
32 1re 7856 . . . 4 1 ∈ ℝ
3332rexri 7914 . . 3 1 ∈ ℝ*
34 elioo2 9803 . . 3 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((cos‘𝐴) ∈ (-1(,)1) ↔ ((cos‘𝐴) ∈ ℝ ∧ -1 < (cos‘𝐴) ∧ (cos‘𝐴) < 1)))
3531, 33, 34mp2an 423 . 2 ((cos‘𝐴) ∈ (-1(,)1) ↔ ((cos‘𝐴) ∈ ℝ ∧ -1 < (cos‘𝐴) ∧ (cos‘𝐴) < 1))
362, 18, 29, 35syl3anbrc 1166 1 (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 963  wcel 2125  wss 3098   class class class wbr 3961  cfv 5163  (class class class)co 5814  cr 7710  0cc0 7711  1c1 7712   · cmul 7716  *cxr 7890   < clt 7891  cle 7892  -cneg 8026  2c2 8863  (,)cioo 9770  [,]cicc 9773  cosccos 11519  πcpi 11521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831  ax-pre-suploc 7832  ax-addf 7833  ax-mulf 7834
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-disj 3939  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-of 6022  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-map 6584  df-pm 6585  df-en 6675  df-dom 6676  df-fin 6677  df-sup 6916  df-inf 6917  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-5 8874  df-6 8875  df-7 8876  df-8 8877  df-9 8878  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-xneg 9657  df-xadd 9658  df-ioo 9774  df-ioc 9775  df-ico 9776  df-icc 9777  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-fac 10577  df-bc 10599  df-ihash 10627  df-shft 10692  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228  df-ef 11522  df-sin 11524  df-cos 11525  df-pi 11527  df-rest 12292  df-topgen 12311  df-psmet 12326  df-xmet 12327  df-met 12328  df-bl 12329  df-mopn 12330  df-top 12335  df-topon 12348  df-bases 12380  df-ntr 12435  df-cn 12527  df-cnp 12528  df-tx 12592  df-cncf 12897  df-limced 12964  df-dvap 12965
This theorem is referenced by:  ioocosf1o  13114
  Copyright terms: Public domain W3C validator