![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cos0pilt1 | GIF version |
Description: Cosine is between minus one and one on the open interval between zero and π. (Contributed by Jim Kingdon, 7-May-2024.) |
Ref | Expression |
---|---|
cos0pilt1 | ⊢ (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 9944 | . . 3 ⊢ (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℝ) | |
2 | 1 | recoscld 11767 | . 2 ⊢ (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ ℝ) |
3 | cospi 14698 | . . 3 ⊢ (cos‘π) = -1 | |
4 | ioossicc 9991 | . . . . 5 ⊢ (0(,)π) ⊆ (0[,]π) | |
5 | 4 | sseli 3166 | . . . 4 ⊢ (𝐴 ∈ (0(,)π) → 𝐴 ∈ (0[,]π)) |
6 | 0xr 8035 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
7 | pire 14684 | . . . . . . 7 ⊢ π ∈ ℝ | |
8 | 7 | rexri 8046 | . . . . . 6 ⊢ π ∈ ℝ* |
9 | 0re 7988 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
10 | pipos 14686 | . . . . . . 7 ⊢ 0 < π | |
11 | 9, 7, 10 | ltleii 8091 | . . . . . 6 ⊢ 0 ≤ π |
12 | ubicc2 10017 | . . . . . 6 ⊢ ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π)) | |
13 | 6, 8, 11, 12 | mp3an 1348 | . . . . 5 ⊢ π ∈ (0[,]π) |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ (0(,)π) → π ∈ (0[,]π)) |
15 | eliooord 9960 | . . . . 5 ⊢ (𝐴 ∈ (0(,)π) → (0 < 𝐴 ∧ 𝐴 < π)) | |
16 | 15 | simprd 114 | . . . 4 ⊢ (𝐴 ∈ (0(,)π) → 𝐴 < π) |
17 | 5, 14, 16 | cosordlem 14747 | . . 3 ⊢ (𝐴 ∈ (0(,)π) → (cos‘π) < (cos‘𝐴)) |
18 | 3, 17 | eqbrtrrid 4054 | . 2 ⊢ (𝐴 ∈ (0(,)π) → -1 < (cos‘𝐴)) |
19 | 2re 9020 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
20 | 19, 7 | remulcli 8002 | . . . . . 6 ⊢ (2 · π) ∈ ℝ |
21 | 20 | rexri 8046 | . . . . 5 ⊢ (2 · π) ∈ ℝ* |
22 | 1le2 9158 | . . . . . 6 ⊢ 1 ≤ 2 | |
23 | lemulge12 8855 | . . . . . 6 ⊢ (((π ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ π ∧ 1 ≤ 2)) → π ≤ (2 · π)) | |
24 | 7, 19, 11, 22, 23 | mp4an 427 | . . . . 5 ⊢ π ≤ (2 · π) |
25 | iooss2 9949 | . . . . 5 ⊢ (((2 · π) ∈ ℝ* ∧ π ≤ (2 · π)) → (0(,)π) ⊆ (0(,)(2 · π))) | |
26 | 21, 24, 25 | mp2an 426 | . . . 4 ⊢ (0(,)π) ⊆ (0(,)(2 · π)) |
27 | 26 | sseli 3166 | . . 3 ⊢ (𝐴 ∈ (0(,)π) → 𝐴 ∈ (0(,)(2 · π))) |
28 | cos02pilt1 14749 | . . 3 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1) | |
29 | 27, 28 | syl 14 | . 2 ⊢ (𝐴 ∈ (0(,)π) → (cos‘𝐴) < 1) |
30 | neg1rr 9056 | . . . 4 ⊢ -1 ∈ ℝ | |
31 | 30 | rexri 8046 | . . 3 ⊢ -1 ∈ ℝ* |
32 | 1re 7987 | . . . 4 ⊢ 1 ∈ ℝ | |
33 | 32 | rexri 8046 | . . 3 ⊢ 1 ∈ ℝ* |
34 | elioo2 9953 | . . 3 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((cos‘𝐴) ∈ (-1(,)1) ↔ ((cos‘𝐴) ∈ ℝ ∧ -1 < (cos‘𝐴) ∧ (cos‘𝐴) < 1))) | |
35 | 31, 33, 34 | mp2an 426 | . 2 ⊢ ((cos‘𝐴) ∈ (-1(,)1) ↔ ((cos‘𝐴) ∈ ℝ ∧ -1 < (cos‘𝐴) ∧ (cos‘𝐴) < 1)) |
36 | 2, 18, 29, 35 | syl3anbrc 1183 | 1 ⊢ (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 ∈ wcel 2160 ⊆ wss 3144 class class class wbr 4018 ‘cfv 5235 (class class class)co 5897 ℝcr 7841 0cc0 7842 1c1 7843 · cmul 7847 ℝ*cxr 8022 < clt 8023 ≤ cle 8024 -cneg 8160 2c2 9001 (,)cioo 9920 [,]cicc 9923 cosccos 11688 πcpi 11690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 ax-caucvg 7962 ax-pre-suploc 7963 ax-addf 7964 ax-mulf 7965 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-disj 3996 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-of 6107 df-1st 6166 df-2nd 6167 df-recs 6331 df-irdg 6396 df-frec 6417 df-1o 6442 df-oadd 6446 df-er 6560 df-map 6677 df-pm 6678 df-en 6768 df-dom 6769 df-fin 6770 df-sup 7014 df-inf 7015 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-7 9014 df-8 9015 df-9 9016 df-n0 9208 df-z 9285 df-uz 9560 df-q 9652 df-rp 9686 df-xneg 9804 df-xadd 9805 df-ioo 9924 df-ioc 9925 df-ico 9926 df-icc 9927 df-fz 10041 df-fzo 10175 df-seqfrec 10479 df-exp 10554 df-fac 10741 df-bc 10763 df-ihash 10791 df-shft 10859 df-cj 10886 df-re 10887 df-im 10888 df-rsqrt 11042 df-abs 11043 df-clim 11322 df-sumdc 11397 df-ef 11691 df-sin 11693 df-cos 11694 df-pi 11696 df-rest 12749 df-topgen 12768 df-psmet 13873 df-xmet 13874 df-met 13875 df-bl 13876 df-mopn 13877 df-top 13975 df-topon 13988 df-bases 14020 df-ntr 14073 df-cn 14165 df-cnp 14166 df-tx 14230 df-cncf 14535 df-limced 14602 df-dvap 14603 |
This theorem is referenced by: ioocosf1o 14752 |
Copyright terms: Public domain | W3C validator |