ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos0pilt1 GIF version

Theorem cos0pilt1 15526
Description: Cosine is between minus one and one on the open interval between zero and π. (Contributed by Jim Kingdon, 7-May-2024.)
Assertion
Ref Expression
cos0pilt1 (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1))

Proof of Theorem cos0pilt1
StepHypRef Expression
1 elioore 10108 . . 3 (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℝ)
21recoscld 12235 . 2 (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ ℝ)
3 cospi 15474 . . 3 (cos‘π) = -1
4 ioossicc 10155 . . . . 5 (0(,)π) ⊆ (0[,]π)
54sseli 3220 . . . 4 (𝐴 ∈ (0(,)π) → 𝐴 ∈ (0[,]π))
6 0xr 8193 . . . . . 6 0 ∈ ℝ*
7 pire 15460 . . . . . . 7 π ∈ ℝ
87rexri 8204 . . . . . 6 π ∈ ℝ*
9 0re 8146 . . . . . . 7 0 ∈ ℝ
10 pipos 15462 . . . . . . 7 0 < π
119, 7, 10ltleii 8249 . . . . . 6 0 ≤ π
12 ubicc2 10181 . . . . . 6 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
136, 8, 11, 12mp3an 1371 . . . . 5 π ∈ (0[,]π)
1413a1i 9 . . . 4 (𝐴 ∈ (0(,)π) → π ∈ (0[,]π))
15 eliooord 10124 . . . . 5 (𝐴 ∈ (0(,)π) → (0 < 𝐴𝐴 < π))
1615simprd 114 . . . 4 (𝐴 ∈ (0(,)π) → 𝐴 < π)
175, 14, 16cosordlem 15523 . . 3 (𝐴 ∈ (0(,)π) → (cos‘π) < (cos‘𝐴))
183, 17eqbrtrrid 4119 . 2 (𝐴 ∈ (0(,)π) → -1 < (cos‘𝐴))
19 2re 9180 . . . . . . 7 2 ∈ ℝ
2019, 7remulcli 8160 . . . . . 6 (2 · π) ∈ ℝ
2120rexri 8204 . . . . 5 (2 · π) ∈ ℝ*
22 1le2 9319 . . . . . 6 1 ≤ 2
23 lemulge12 9014 . . . . . 6 (((π ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ π ∧ 1 ≤ 2)) → π ≤ (2 · π))
247, 19, 11, 22, 23mp4an 427 . . . . 5 π ≤ (2 · π)
25 iooss2 10113 . . . . 5 (((2 · π) ∈ ℝ* ∧ π ≤ (2 · π)) → (0(,)π) ⊆ (0(,)(2 · π)))
2621, 24, 25mp2an 426 . . . 4 (0(,)π) ⊆ (0(,)(2 · π))
2726sseli 3220 . . 3 (𝐴 ∈ (0(,)π) → 𝐴 ∈ (0(,)(2 · π)))
28 cos02pilt1 15525 . . 3 (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1)
2927, 28syl 14 . 2 (𝐴 ∈ (0(,)π) → (cos‘𝐴) < 1)
30 neg1rr 9216 . . . 4 -1 ∈ ℝ
3130rexri 8204 . . 3 -1 ∈ ℝ*
32 1re 8145 . . . 4 1 ∈ ℝ
3332rexri 8204 . . 3 1 ∈ ℝ*
34 elioo2 10117 . . 3 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((cos‘𝐴) ∈ (-1(,)1) ↔ ((cos‘𝐴) ∈ ℝ ∧ -1 < (cos‘𝐴) ∧ (cos‘𝐴) < 1)))
3531, 33, 34mp2an 426 . 2 ((cos‘𝐴) ∈ (-1(,)1) ↔ ((cos‘𝐴) ∈ ℝ ∧ -1 < (cos‘𝐴) ∧ (cos‘𝐴) < 1))
362, 18, 29, 35syl3anbrc 1205 1 (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002  wcel 2200  wss 3197   class class class wbr 4083  cfv 5318  (class class class)co 6001  cr 7998  0cc0 7999  1c1 8000   · cmul 8004  *cxr 8180   < clt 8181  cle 8182  -cneg 8318  2c2 9161  (,)cioo 10084  [,]cicc 10087  cosccos 12156  πcpi 12158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-pre-suploc 8120  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-map 6797  df-pm 6798  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ioo 10088  df-ioc 10089  df-ico 10090  df-icc 10091  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-shft 11326  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-sin 12161  df-cos 12162  df-pi 12164  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245  df-limced 15330  df-dvap 15331
This theorem is referenced by:  ioocosf1o  15528
  Copyright terms: Public domain W3C validator