![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0lt1sr | GIF version |
Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) |
Ref | Expression |
---|---|
0lt1sr | ⊢ 0R <R 1R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr 7210 | . . . . . 6 ⊢ 1P ∈ P | |
2 | addclpr 7193 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
3 | 1, 1, 2 | mp2an 418 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
4 | ltaddpr 7253 | . . . . 5 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → (1P +P 1P)<P ((1P +P 1P) +P 1P)) | |
5 | 3, 1, 4 | mp2an 418 | . . . 4 ⊢ (1P +P 1P)<P ((1P +P 1P) +P 1P) |
6 | addcomprg 7234 | . . . . 5 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) = ((1P +P 1P) +P 1P)) | |
7 | 1, 3, 6 | mp2an 418 | . . . 4 ⊢ (1P +P (1P +P 1P)) = ((1P +P 1P) +P 1P) |
8 | 5, 7 | breqtrri 3892 | . . 3 ⊢ (1P +P 1P)<P (1P +P (1P +P 1P)) |
9 | ltsrprg 7390 | . . . 4 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R ↔ (1P +P 1P)<P (1P +P (1P +P 1P)))) | |
10 | 1, 1, 3, 1, 9 | mp4an 419 | . . 3 ⊢ ([〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R ↔ (1P +P 1P)<P (1P +P (1P +P 1P))) |
11 | 8, 10 | mpbir 145 | . 2 ⊢ [〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R |
12 | df-0r 7374 | . 2 ⊢ 0R = [〈1P, 1P〉] ~R | |
13 | df-1r 7375 | . 2 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
14 | 11, 12, 13 | 3brtr4i 3895 | 1 ⊢ 0R <R 1R |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1296 ∈ wcel 1445 〈cop 3469 class class class wbr 3867 (class class class)co 5690 [cec 6330 Pcnp 6947 1Pc1p 6948 +P cpp 6949 <P cltp 6951 ~R cer 6952 0Rc0r 6954 1Rc1r 6955 <R cltr 6959 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-eprel 4140 df-id 4144 df-po 4147 df-iso 4148 df-iord 4217 df-on 4219 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-irdg 6173 df-1o 6219 df-2o 6220 df-oadd 6223 df-omul 6224 df-er 6332 df-ec 6334 df-qs 6338 df-ni 6960 df-pli 6961 df-mi 6962 df-lti 6963 df-plpq 7000 df-mpq 7001 df-enq 7003 df-nqqs 7004 df-plqqs 7005 df-mqqs 7006 df-1nqqs 7007 df-rq 7008 df-ltnqqs 7009 df-enq0 7080 df-nq0 7081 df-0nq0 7082 df-plq0 7083 df-mq0 7084 df-inp 7122 df-i1p 7123 df-iplp 7124 df-iltp 7126 df-enr 7369 df-nr 7370 df-ltr 7373 df-0r 7374 df-1r 7375 |
This theorem is referenced by: 1ne0sr 7409 ltadd1sr 7419 caucvgsrlemcl 7431 caucvgsrlemfv 7433 ax0lt1 7508 |
Copyright terms: Public domain | W3C validator |