| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1sr | GIF version | ||
| Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) |
| Ref | Expression |
|---|---|
| 0lt1sr | ⊢ 0R <R 1R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7666 | . . . . . 6 ⊢ 1P ∈ P | |
| 2 | addclpr 7649 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 426 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
| 4 | ltaddpr 7709 | . . . . 5 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → (1P +P 1P)<P ((1P +P 1P) +P 1P)) | |
| 5 | 3, 1, 4 | mp2an 426 | . . . 4 ⊢ (1P +P 1P)<P ((1P +P 1P) +P 1P) |
| 6 | addcomprg 7690 | . . . . 5 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) = ((1P +P 1P) +P 1P)) | |
| 7 | 1, 3, 6 | mp2an 426 | . . . 4 ⊢ (1P +P (1P +P 1P)) = ((1P +P 1P) +P 1P) |
| 8 | 5, 7 | breqtrri 4070 | . . 3 ⊢ (1P +P 1P)<P (1P +P (1P +P 1P)) |
| 9 | ltsrprg 7859 | . . . 4 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R ↔ (1P +P 1P)<P (1P +P (1P +P 1P)))) | |
| 10 | 1, 1, 3, 1, 9 | mp4an 427 | . . 3 ⊢ ([〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R ↔ (1P +P 1P)<P (1P +P (1P +P 1P))) |
| 11 | 8, 10 | mpbir 146 | . 2 ⊢ [〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R |
| 12 | df-0r 7843 | . 2 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 13 | df-1r 7844 | . 2 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 14 | 11, 12, 13 | 3brtr4i 4073 | 1 ⊢ 0R <R 1R |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 ∈ wcel 2175 〈cop 3635 class class class wbr 4043 (class class class)co 5943 [cec 6617 Pcnp 7403 1Pc1p 7404 +P cpp 7405 <P cltp 7407 ~R cer 7408 0Rc0r 7410 1Rc1r 7411 <R cltr 7415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-2o 6502 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-enq0 7536 df-nq0 7537 df-0nq0 7538 df-plq0 7539 df-mq0 7540 df-inp 7578 df-i1p 7579 df-iplp 7580 df-iltp 7582 df-enr 7838 df-nr 7839 df-ltr 7842 df-0r 7843 df-1r 7844 |
| This theorem is referenced by: 1ne0sr 7878 ltadd1sr 7888 caucvgsrlemcl 7901 caucvgsrlemfv 7903 suplocsrlempr 7919 ax0lt1 7988 |
| Copyright terms: Public domain | W3C validator |