| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1sr | GIF version | ||
| Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) |
| Ref | Expression |
|---|---|
| 0lt1sr | ⊢ 0R <R 1R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7702 | . . . . . 6 ⊢ 1P ∈ P | |
| 2 | addclpr 7685 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 426 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
| 4 | ltaddpr 7745 | . . . . 5 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → (1P +P 1P)<P ((1P +P 1P) +P 1P)) | |
| 5 | 3, 1, 4 | mp2an 426 | . . . 4 ⊢ (1P +P 1P)<P ((1P +P 1P) +P 1P) |
| 6 | addcomprg 7726 | . . . . 5 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) = ((1P +P 1P) +P 1P)) | |
| 7 | 1, 3, 6 | mp2an 426 | . . . 4 ⊢ (1P +P (1P +P 1P)) = ((1P +P 1P) +P 1P) |
| 8 | 5, 7 | breqtrri 4086 | . . 3 ⊢ (1P +P 1P)<P (1P +P (1P +P 1P)) |
| 9 | ltsrprg 7895 | . . . 4 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R ↔ (1P +P 1P)<P (1P +P (1P +P 1P)))) | |
| 10 | 1, 1, 3, 1, 9 | mp4an 427 | . . 3 ⊢ ([〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R ↔ (1P +P 1P)<P (1P +P (1P +P 1P))) |
| 11 | 8, 10 | mpbir 146 | . 2 ⊢ [〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R |
| 12 | df-0r 7879 | . 2 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 13 | df-1r 7880 | . 2 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 14 | 11, 12, 13 | 3brtr4i 4089 | 1 ⊢ 0R <R 1R |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2178 〈cop 3646 class class class wbr 4059 (class class class)co 5967 [cec 6641 Pcnp 7439 1Pc1p 7440 +P cpp 7441 <P cltp 7443 ~R cer 7444 0Rc0r 7446 1Rc1r 7447 <R cltr 7451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-iplp 7616 df-iltp 7618 df-enr 7874 df-nr 7875 df-ltr 7878 df-0r 7879 df-1r 7880 |
| This theorem is referenced by: 1ne0sr 7914 ltadd1sr 7924 caucvgsrlemcl 7937 caucvgsrlemfv 7939 suplocsrlempr 7955 ax0lt1 8024 |
| Copyright terms: Public domain | W3C validator |