| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1sr | GIF version | ||
| Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) |
| Ref | Expression |
|---|---|
| 0lt1sr | ⊢ 0R <R 1R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7667 | . . . . . 6 ⊢ 1P ∈ P | |
| 2 | addclpr 7650 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 426 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
| 4 | ltaddpr 7710 | . . . . 5 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → (1P +P 1P)<P ((1P +P 1P) +P 1P)) | |
| 5 | 3, 1, 4 | mp2an 426 | . . . 4 ⊢ (1P +P 1P)<P ((1P +P 1P) +P 1P) |
| 6 | addcomprg 7691 | . . . . 5 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) = ((1P +P 1P) +P 1P)) | |
| 7 | 1, 3, 6 | mp2an 426 | . . . 4 ⊢ (1P +P (1P +P 1P)) = ((1P +P 1P) +P 1P) |
| 8 | 5, 7 | breqtrri 4071 | . . 3 ⊢ (1P +P 1P)<P (1P +P (1P +P 1P)) |
| 9 | ltsrprg 7860 | . . . 4 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R ↔ (1P +P 1P)<P (1P +P (1P +P 1P)))) | |
| 10 | 1, 1, 3, 1, 9 | mp4an 427 | . . 3 ⊢ ([〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R ↔ (1P +P 1P)<P (1P +P (1P +P 1P))) |
| 11 | 8, 10 | mpbir 146 | . 2 ⊢ [〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R |
| 12 | df-0r 7844 | . 2 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 13 | df-1r 7845 | . 2 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 14 | 11, 12, 13 | 3brtr4i 4074 | 1 ⊢ 0R <R 1R |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2176 〈cop 3636 class class class wbr 4044 (class class class)co 5944 [cec 6618 Pcnp 7404 1Pc1p 7405 +P cpp 7406 <P cltp 7408 ~R cer 7409 0Rc0r 7411 1Rc1r 7412 <R cltr 7416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-i1p 7580 df-iplp 7581 df-iltp 7583 df-enr 7839 df-nr 7840 df-ltr 7843 df-0r 7844 df-1r 7845 |
| This theorem is referenced by: 1ne0sr 7879 ltadd1sr 7889 caucvgsrlemcl 7902 caucvgsrlemfv 7904 suplocsrlempr 7920 ax0lt1 7989 |
| Copyright terms: Public domain | W3C validator |