ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2nq GIF version

Theorem 1lt2nq 7368
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
1lt2nq 1Q <Q (1Q +Q 1Q)

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 7302 . . . . 5 1o <N (1o +N 1o)
2 1pi 7277 . . . . . 6 1oN
3 mulidpi 7280 . . . . . 6 (1oN → (1o ·N 1o) = 1o)
42, 3ax-mp 5 . . . . 5 (1o ·N 1o) = 1o
54, 4oveq12i 5865 . . . . 5 ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o)
61, 4, 53brtr4i 4019 . . . 4 (1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o))
7 mulclpi 7290 . . . . . 6 ((1oN ∧ 1oN) → (1o ·N 1o) ∈ N)
82, 2, 7mp2an 424 . . . . 5 (1o ·N 1o) ∈ N
9 addclpi 7289 . . . . . 6 (((1o ·N 1o) ∈ N ∧ (1o ·N 1o) ∈ N) → ((1o ·N 1o) +N (1o ·N 1o)) ∈ N)
108, 8, 9mp2an 424 . . . . 5 ((1o ·N 1o) +N (1o ·N 1o)) ∈ N
11 ltmpig 7301 . . . . 5 (((1o ·N 1o) ∈ N ∧ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ 1oN) → ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))))
128, 10, 2, 11mp3an 1332 . . . 4 ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))
136, 12mpbi 144 . . 3 (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))
14 ordpipqqs 7336 . . . 4 (((1oN ∧ 1oN) ∧ (((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ (1o ·N 1o) ∈ N)) → ([⟨1o, 1o⟩] ~Q <Q [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))))
152, 2, 10, 8, 14mp4an 425 . . 3 ([⟨1o, 1o⟩] ~Q <Q [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))
1613, 15mpbir 145 . 2 [⟨1o, 1o⟩] ~Q <Q [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q
17 df-1nqqs 7313 . 2 1Q = [⟨1o, 1o⟩] ~Q
1817, 17oveq12i 5865 . . 3 (1Q +Q 1Q) = ([⟨1o, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q )
19 addpipqqs 7332 . . . 4 (((1oN ∧ 1oN) ∧ (1oN ∧ 1oN)) → ([⟨1o, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q )
202, 2, 2, 2, 19mp4an 425 . . 3 ([⟨1o, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q
2118, 20eqtri 2191 . 2 (1Q +Q 1Q) = [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q
2216, 17, 213brtr4i 4019 1 1Q <Q (1Q +Q 1Q)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  wcel 2141  cop 3586   class class class wbr 3989  (class class class)co 5853  1oc1o 6388  [cec 6511  Ncnpi 7234   +N cpli 7235   ·N cmi 7236   <N clti 7237   ~Q ceq 7241  1Qc1q 7243   +Q cplq 7244   <Q cltq 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-1nqqs 7313  df-ltnqqs 7315
This theorem is referenced by:  ltaddnq  7369
  Copyright terms: Public domain W3C validator