![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1lt2nq | GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2pi 7400 | . . . . 5 ⊢ 1o <N (1o +N 1o) | |
2 | 1pi 7375 | . . . . . 6 ⊢ 1o ∈ N | |
3 | mulidpi 7378 | . . . . . 6 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (1o ·N 1o) = 1o |
5 | 4, 4 | oveq12i 5930 | . . . . 5 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
6 | 1, 4, 5 | 3brtr4i 4059 | . . . 4 ⊢ (1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) |
7 | mulclpi 7388 | . . . . . 6 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o ·N 1o) ∈ N) | |
8 | 2, 2, 7 | mp2an 426 | . . . . 5 ⊢ (1o ·N 1o) ∈ N |
9 | addclpi 7387 | . . . . . 6 ⊢ (((1o ·N 1o) ∈ N ∧ (1o ·N 1o) ∈ N) → ((1o ·N 1o) +N (1o ·N 1o)) ∈ N) | |
10 | 8, 8, 9 | mp2an 426 | . . . . 5 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N |
11 | ltmpig 7399 | . . . . 5 ⊢ (((1o ·N 1o) ∈ N ∧ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ 1o ∈ N) → ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))) | |
12 | 8, 10, 2, 11 | mp3an 1348 | . . . 4 ⊢ ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))) |
13 | 6, 12 | mpbi 145 | . . 3 ⊢ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))) |
14 | ordpipqqs 7434 | . . . 4 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ (1o ·N 1o) ∈ N)) → ([〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))) | |
15 | 2, 2, 10, 8, 14 | mp4an 427 | . . 3 ⊢ ([〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))) |
16 | 13, 15 | mpbir 146 | . 2 ⊢ [〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
17 | df-1nqqs 7411 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
18 | 17, 17 | oveq12i 5930 | . . 3 ⊢ (1Q +Q 1Q) = ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) |
19 | addpipqqs 7430 | . . . 4 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) | |
20 | 2, 2, 2, 2, 19 | mp4an 427 | . . 3 ⊢ ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
21 | 18, 20 | eqtri 2214 | . 2 ⊢ (1Q +Q 1Q) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
22 | 16, 17, 21 | 3brtr4i 4059 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 〈cop 3621 class class class wbr 4029 (class class class)co 5918 1oc1o 6462 [cec 6585 Ncnpi 7332 +N cpli 7333 ·N cmi 7334 <N clti 7335 ~Q ceq 7339 1Qc1q 7341 +Q cplq 7342 <Q cltq 7345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-pli 7365 df-mi 7366 df-lti 7367 df-plpq 7404 df-enq 7407 df-nqqs 7408 df-plqqs 7409 df-1nqqs 7411 df-ltnqqs 7413 |
This theorem is referenced by: ltaddnq 7467 |
Copyright terms: Public domain | W3C validator |