Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1lt2nq | GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2pi 7302 | . . . . 5 ⊢ 1o <N (1o +N 1o) | |
2 | 1pi 7277 | . . . . . 6 ⊢ 1o ∈ N | |
3 | mulidpi 7280 | . . . . . 6 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (1o ·N 1o) = 1o |
5 | 4, 4 | oveq12i 5865 | . . . . 5 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
6 | 1, 4, 5 | 3brtr4i 4019 | . . . 4 ⊢ (1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) |
7 | mulclpi 7290 | . . . . . 6 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o ·N 1o) ∈ N) | |
8 | 2, 2, 7 | mp2an 424 | . . . . 5 ⊢ (1o ·N 1o) ∈ N |
9 | addclpi 7289 | . . . . . 6 ⊢ (((1o ·N 1o) ∈ N ∧ (1o ·N 1o) ∈ N) → ((1o ·N 1o) +N (1o ·N 1o)) ∈ N) | |
10 | 8, 8, 9 | mp2an 424 | . . . . 5 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N |
11 | ltmpig 7301 | . . . . 5 ⊢ (((1o ·N 1o) ∈ N ∧ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ 1o ∈ N) → ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))) | |
12 | 8, 10, 2, 11 | mp3an 1332 | . . . 4 ⊢ ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))) |
13 | 6, 12 | mpbi 144 | . . 3 ⊢ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))) |
14 | ordpipqqs 7336 | . . . 4 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ (1o ·N 1o) ∈ N)) → ([〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))) | |
15 | 2, 2, 10, 8, 14 | mp4an 425 | . . 3 ⊢ ([〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))) |
16 | 13, 15 | mpbir 145 | . 2 ⊢ [〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
17 | df-1nqqs 7313 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
18 | 17, 17 | oveq12i 5865 | . . 3 ⊢ (1Q +Q 1Q) = ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) |
19 | addpipqqs 7332 | . . . 4 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) | |
20 | 2, 2, 2, 2, 19 | mp4an 425 | . . 3 ⊢ ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
21 | 18, 20 | eqtri 2191 | . 2 ⊢ (1Q +Q 1Q) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
22 | 16, 17, 21 | 3brtr4i 4019 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∈ wcel 2141 〈cop 3586 class class class wbr 3989 (class class class)co 5853 1oc1o 6388 [cec 6511 Ncnpi 7234 +N cpli 7235 ·N cmi 7236 <N clti 7237 ~Q ceq 7241 1Qc1q 7243 +Q cplq 7244 <Q cltq 7247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-1nqqs 7313 df-ltnqqs 7315 |
This theorem is referenced by: ltaddnq 7369 |
Copyright terms: Public domain | W3C validator |