| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2nq | GIF version | ||
| Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| 1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2pi 7407 | . . . . 5 ⊢ 1o <N (1o +N 1o) | |
| 2 | 1pi 7382 | . . . . . 6 ⊢ 1o ∈ N | |
| 3 | mulidpi 7385 | . . . . . 6 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (1o ·N 1o) = 1o |
| 5 | 4, 4 | oveq12i 5934 | . . . . 5 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
| 6 | 1, 4, 5 | 3brtr4i 4063 | . . . 4 ⊢ (1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) |
| 7 | mulclpi 7395 | . . . . . 6 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o ·N 1o) ∈ N) | |
| 8 | 2, 2, 7 | mp2an 426 | . . . . 5 ⊢ (1o ·N 1o) ∈ N |
| 9 | addclpi 7394 | . . . . . 6 ⊢ (((1o ·N 1o) ∈ N ∧ (1o ·N 1o) ∈ N) → ((1o ·N 1o) +N (1o ·N 1o)) ∈ N) | |
| 10 | 8, 8, 9 | mp2an 426 | . . . . 5 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N |
| 11 | ltmpig 7406 | . . . . 5 ⊢ (((1o ·N 1o) ∈ N ∧ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ 1o ∈ N) → ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))) | |
| 12 | 8, 10, 2, 11 | mp3an 1348 | . . . 4 ⊢ ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))) |
| 13 | 6, 12 | mpbi 145 | . . 3 ⊢ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))) |
| 14 | ordpipqqs 7441 | . . . 4 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ (1o ·N 1o) ∈ N)) → ([〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))) | |
| 15 | 2, 2, 10, 8, 14 | mp4an 427 | . . 3 ⊢ ([〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))) |
| 16 | 13, 15 | mpbir 146 | . 2 ⊢ [〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
| 17 | df-1nqqs 7418 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 18 | 17, 17 | oveq12i 5934 | . . 3 ⊢ (1Q +Q 1Q) = ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) |
| 19 | addpipqqs 7437 | . . . 4 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) | |
| 20 | 2, 2, 2, 2, 19 | mp4an 427 | . . 3 ⊢ ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
| 21 | 18, 20 | eqtri 2217 | . 2 ⊢ (1Q +Q 1Q) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
| 22 | 16, 17, 21 | 3brtr4i 4063 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 〈cop 3625 class class class wbr 4033 (class class class)co 5922 1oc1o 6467 [cec 6590 Ncnpi 7339 +N cpli 7340 ·N cmi 7341 <N clti 7342 ~Q ceq 7346 1Qc1q 7348 +Q cplq 7349 <Q cltq 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-1nqqs 7418 df-ltnqqs 7420 |
| This theorem is referenced by: ltaddnq 7474 |
| Copyright terms: Public domain | W3C validator |