ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2nq GIF version

Theorem 1lt2nq 7601
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
1lt2nq 1Q <Q (1Q +Q 1Q)

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 7535 . . . . 5 1o <N (1o +N 1o)
2 1pi 7510 . . . . . 6 1oN
3 mulidpi 7513 . . . . . 6 (1oN → (1o ·N 1o) = 1o)
42, 3ax-mp 5 . . . . 5 (1o ·N 1o) = 1o
54, 4oveq12i 6019 . . . . 5 ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o)
61, 4, 53brtr4i 4113 . . . 4 (1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o))
7 mulclpi 7523 . . . . . 6 ((1oN ∧ 1oN) → (1o ·N 1o) ∈ N)
82, 2, 7mp2an 426 . . . . 5 (1o ·N 1o) ∈ N
9 addclpi 7522 . . . . . 6 (((1o ·N 1o) ∈ N ∧ (1o ·N 1o) ∈ N) → ((1o ·N 1o) +N (1o ·N 1o)) ∈ N)
108, 8, 9mp2an 426 . . . . 5 ((1o ·N 1o) +N (1o ·N 1o)) ∈ N
11 ltmpig 7534 . . . . 5 (((1o ·N 1o) ∈ N ∧ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ 1oN) → ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))))
128, 10, 2, 11mp3an 1371 . . . 4 ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))
136, 12mpbi 145 . . 3 (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))
14 ordpipqqs 7569 . . . 4 (((1oN ∧ 1oN) ∧ (((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ (1o ·N 1o) ∈ N)) → ([⟨1o, 1o⟩] ~Q <Q [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))))
152, 2, 10, 8, 14mp4an 427 . . 3 ([⟨1o, 1o⟩] ~Q <Q [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))
1613, 15mpbir 146 . 2 [⟨1o, 1o⟩] ~Q <Q [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q
17 df-1nqqs 7546 . 2 1Q = [⟨1o, 1o⟩] ~Q
1817, 17oveq12i 6019 . . 3 (1Q +Q 1Q) = ([⟨1o, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q )
19 addpipqqs 7565 . . . 4 (((1oN ∧ 1oN) ∧ (1oN ∧ 1oN)) → ([⟨1o, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q )
202, 2, 2, 2, 19mp4an 427 . . 3 ([⟨1o, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q
2118, 20eqtri 2250 . 2 (1Q +Q 1Q) = [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q
2216, 17, 213brtr4i 4113 1 1Q <Q (1Q +Q 1Q)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wcel 2200  cop 3669   class class class wbr 4083  (class class class)co 6007  1oc1o 6561  [cec 6686  Ncnpi 7467   +N cpli 7468   ·N cmi 7469   <N clti 7470   ~Q ceq 7474  1Qc1q 7476   +Q cplq 7477   <Q cltq 7480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-pli 7500  df-mi 7501  df-lti 7502  df-plpq 7539  df-enq 7542  df-nqqs 7543  df-plqqs 7544  df-1nqqs 7546  df-ltnqqs 7548
This theorem is referenced by:  ltaddnq  7602
  Copyright terms: Public domain W3C validator