![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1lt2nq | GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2pi 7402 | . . . . 5 ⊢ 1o <N (1o +N 1o) | |
2 | 1pi 7377 | . . . . . 6 ⊢ 1o ∈ N | |
3 | mulidpi 7380 | . . . . . 6 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (1o ·N 1o) = 1o |
5 | 4, 4 | oveq12i 5931 | . . . . 5 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
6 | 1, 4, 5 | 3brtr4i 4060 | . . . 4 ⊢ (1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) |
7 | mulclpi 7390 | . . . . . 6 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o ·N 1o) ∈ N) | |
8 | 2, 2, 7 | mp2an 426 | . . . . 5 ⊢ (1o ·N 1o) ∈ N |
9 | addclpi 7389 | . . . . . 6 ⊢ (((1o ·N 1o) ∈ N ∧ (1o ·N 1o) ∈ N) → ((1o ·N 1o) +N (1o ·N 1o)) ∈ N) | |
10 | 8, 8, 9 | mp2an 426 | . . . . 5 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N |
11 | ltmpig 7401 | . . . . 5 ⊢ (((1o ·N 1o) ∈ N ∧ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ 1o ∈ N) → ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))) | |
12 | 8, 10, 2, 11 | mp3an 1348 | . . . 4 ⊢ ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))) |
13 | 6, 12 | mpbi 145 | . . 3 ⊢ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))) |
14 | ordpipqqs 7436 | . . . 4 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ (1o ·N 1o) ∈ N)) → ([〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))) | |
15 | 2, 2, 10, 8, 14 | mp4an 427 | . . 3 ⊢ ([〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))) |
16 | 13, 15 | mpbir 146 | . 2 ⊢ [〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
17 | df-1nqqs 7413 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
18 | 17, 17 | oveq12i 5931 | . . 3 ⊢ (1Q +Q 1Q) = ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) |
19 | addpipqqs 7432 | . . . 4 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) | |
20 | 2, 2, 2, 2, 19 | mp4an 427 | . . 3 ⊢ ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
21 | 18, 20 | eqtri 2214 | . 2 ⊢ (1Q +Q 1Q) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
22 | 16, 17, 21 | 3brtr4i 4060 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 〈cop 3622 class class class wbr 4030 (class class class)co 5919 1oc1o 6464 [cec 6587 Ncnpi 7334 +N cpli 7335 ·N cmi 7336 <N clti 7337 ~Q ceq 7341 1Qc1q 7343 +Q cplq 7344 <Q cltq 7347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-1nqqs 7413 df-ltnqqs 7415 |
This theorem is referenced by: ltaddnq 7469 |
Copyright terms: Public domain | W3C validator |