ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2nq GIF version

Theorem 1lt2nq 7473
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
1lt2nq 1Q <Q (1Q +Q 1Q)

Proof of Theorem 1lt2nq
StepHypRef Expression
1 1lt2pi 7407 . . . . 5 1o <N (1o +N 1o)
2 1pi 7382 . . . . . 6 1oN
3 mulidpi 7385 . . . . . 6 (1oN → (1o ·N 1o) = 1o)
42, 3ax-mp 5 . . . . 5 (1o ·N 1o) = 1o
54, 4oveq12i 5934 . . . . 5 ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o)
61, 4, 53brtr4i 4063 . . . 4 (1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o))
7 mulclpi 7395 . . . . . 6 ((1oN ∧ 1oN) → (1o ·N 1o) ∈ N)
82, 2, 7mp2an 426 . . . . 5 (1o ·N 1o) ∈ N
9 addclpi 7394 . . . . . 6 (((1o ·N 1o) ∈ N ∧ (1o ·N 1o) ∈ N) → ((1o ·N 1o) +N (1o ·N 1o)) ∈ N)
108, 8, 9mp2an 426 . . . . 5 ((1o ·N 1o) +N (1o ·N 1o)) ∈ N
11 ltmpig 7406 . . . . 5 (((1o ·N 1o) ∈ N ∧ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ 1oN) → ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))))
128, 10, 2, 11mp3an 1348 . . . 4 ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))
136, 12mpbi 145 . . 3 (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))
14 ordpipqqs 7441 . . . 4 (((1oN ∧ 1oN) ∧ (((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ (1o ·N 1o) ∈ N)) → ([⟨1o, 1o⟩] ~Q <Q [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))))
152, 2, 10, 8, 14mp4an 427 . . 3 ([⟨1o, 1o⟩] ~Q <Q [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))
1613, 15mpbir 146 . 2 [⟨1o, 1o⟩] ~Q <Q [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q
17 df-1nqqs 7418 . 2 1Q = [⟨1o, 1o⟩] ~Q
1817, 17oveq12i 5934 . . 3 (1Q +Q 1Q) = ([⟨1o, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q )
19 addpipqqs 7437 . . . 4 (((1oN ∧ 1oN) ∧ (1oN ∧ 1oN)) → ([⟨1o, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q )
202, 2, 2, 2, 19mp4an 427 . . 3 ([⟨1o, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q
2118, 20eqtri 2217 . 2 (1Q +Q 1Q) = [⟨((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q
2216, 17, 213brtr4i 4063 1 1Q <Q (1Q +Q 1Q)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167  cop 3625   class class class wbr 4033  (class class class)co 5922  1oc1o 6467  [cec 6590  Ncnpi 7339   +N cpli 7340   ·N cmi 7341   <N clti 7342   ~Q ceq 7346  1Qc1q 7348   +Q cplq 7349   <Q cltq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-1nqqs 7418  df-ltnqqs 7420
This theorem is referenced by:  ltaddnq  7474
  Copyright terms: Public domain W3C validator