| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2nq | GIF version | ||
| Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| 1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2pi 7535 | . . . . 5 ⊢ 1o <N (1o +N 1o) | |
| 2 | 1pi 7510 | . . . . . 6 ⊢ 1o ∈ N | |
| 3 | mulidpi 7513 | . . . . . 6 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (1o ·N 1o) = 1o |
| 5 | 4, 4 | oveq12i 6019 | . . . . 5 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) = (1o +N 1o) |
| 6 | 1, 4, 5 | 3brtr4i 4113 | . . . 4 ⊢ (1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) |
| 7 | mulclpi 7523 | . . . . . 6 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o ·N 1o) ∈ N) | |
| 8 | 2, 2, 7 | mp2an 426 | . . . . 5 ⊢ (1o ·N 1o) ∈ N |
| 9 | addclpi 7522 | . . . . . 6 ⊢ (((1o ·N 1o) ∈ N ∧ (1o ·N 1o) ∈ N) → ((1o ·N 1o) +N (1o ·N 1o)) ∈ N) | |
| 10 | 8, 8, 9 | mp2an 426 | . . . . 5 ⊢ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N |
| 11 | ltmpig 7534 | . . . . 5 ⊢ (((1o ·N 1o) ∈ N ∧ ((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ 1o ∈ N) → ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))) | |
| 12 | 8, 10, 2, 11 | mp3an 1371 | . . . 4 ⊢ ((1o ·N 1o) <N ((1o ·N 1o) +N (1o ·N 1o)) ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))) |
| 13 | 6, 12 | mpbi 145 | . . 3 ⊢ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))) |
| 14 | ordpipqqs 7569 | . . . 4 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (((1o ·N 1o) +N (1o ·N 1o)) ∈ N ∧ (1o ·N 1o) ∈ N)) → ([〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o))))) | |
| 15 | 2, 2, 10, 8, 14 | mp4an 427 | . . 3 ⊢ ([〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ↔ (1o ·N (1o ·N 1o)) <N (1o ·N ((1o ·N 1o) +N (1o ·N 1o)))) |
| 16 | 13, 15 | mpbir 146 | . 2 ⊢ [〈1o, 1o〉] ~Q <Q [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
| 17 | df-1nqqs 7546 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 18 | 17, 17 | oveq12i 6019 | . . 3 ⊢ (1Q +Q 1Q) = ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) |
| 19 | addpipqqs 7565 | . . . 4 ⊢ (((1o ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) | |
| 20 | 2, 2, 2, 2, 19 | mp4an 427 | . . 3 ⊢ ([〈1o, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
| 21 | 18, 20 | eqtri 2250 | . 2 ⊢ (1Q +Q 1Q) = [〈((1o ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q |
| 22 | 16, 17, 21 | 3brtr4i 4113 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 〈cop 3669 class class class wbr 4083 (class class class)co 6007 1oc1o 6561 [cec 6686 Ncnpi 7467 +N cpli 7468 ·N cmi 7469 <N clti 7470 ~Q ceq 7474 1Qc1q 7476 +Q cplq 7477 <Q cltq 7480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-pli 7500 df-mi 7501 df-lti 7502 df-plpq 7539 df-enq 7542 df-nqqs 7543 df-plqqs 7544 df-1nqqs 7546 df-ltnqqs 7548 |
| This theorem is referenced by: ltaddnq 7602 |
| Copyright terms: Public domain | W3C validator |