Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqrt2gt1lt2 | GIF version |
Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.) |
Ref | Expression |
---|---|
sqrt2gt1lt2 | ⊢ (1 < (√‘2) ∧ (√‘2) < 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrt1 11010 | . . 3 ⊢ (√‘1) = 1 | |
2 | 1lt2 9047 | . . . 4 ⊢ 1 < 2 | |
3 | 1re 7919 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | 0le1 8400 | . . . . 5 ⊢ 0 ≤ 1 | |
5 | 2re 8948 | . . . . 5 ⊢ 2 ∈ ℝ | |
6 | 0le2 8968 | . . . . 5 ⊢ 0 ≤ 2 | |
7 | sqrtlt 11001 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → (1 < 2 ↔ (√‘1) < (√‘2))) | |
8 | 3, 4, 5, 6, 7 | mp4an 425 | . . . 4 ⊢ (1 < 2 ↔ (√‘1) < (√‘2)) |
9 | 2, 8 | mpbi 144 | . . 3 ⊢ (√‘1) < (√‘2) |
10 | 1, 9 | eqbrtrri 4012 | . 2 ⊢ 1 < (√‘2) |
11 | 2lt4 9051 | . . . 4 ⊢ 2 < 4 | |
12 | 4re 8955 | . . . . 5 ⊢ 4 ∈ ℝ | |
13 | 0re 7920 | . . . . . 6 ⊢ 0 ∈ ℝ | |
14 | 4pos 8975 | . . . . . 6 ⊢ 0 < 4 | |
15 | 13, 12, 14 | ltleii 8022 | . . . . 5 ⊢ 0 ≤ 4 |
16 | sqrtlt 11001 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4))) | |
17 | 5, 6, 12, 15, 16 | mp4an 425 | . . . 4 ⊢ (2 < 4 ↔ (√‘2) < (√‘4)) |
18 | 11, 17 | mpbi 144 | . . 3 ⊢ (√‘2) < (√‘4) |
19 | sqrt4 11011 | . . 3 ⊢ (√‘4) = 2 | |
20 | 18, 19 | breqtri 4014 | . 2 ⊢ (√‘2) < 2 |
21 | 10, 20 | pm3.2i 270 | 1 ⊢ (1 < (√‘2) ∧ (√‘2) < 2) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 ℝcr 7773 0cc0 7774 1c1 7775 < clt 7954 ≤ cle 7955 2c2 8929 4c4 8931 √csqrt 10960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-seqfrec 10402 df-exp 10476 df-rsqrt 10962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |