ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2gt1lt2 GIF version

Theorem sqrt2gt1lt2 10853
Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.)
Assertion
Ref Expression
sqrt2gt1lt2 (1 < (√‘2) ∧ (√‘2) < 2)

Proof of Theorem sqrt2gt1lt2
StepHypRef Expression
1 sqrt1 10850 . . 3 (√‘1) = 1
2 1lt2 8913 . . . 4 1 < 2
3 1re 7789 . . . . 5 1 ∈ ℝ
4 0le1 8267 . . . . 5 0 ≤ 1
5 2re 8814 . . . . 5 2 ∈ ℝ
6 0le2 8834 . . . . 5 0 ≤ 2
7 sqrtlt 10841 . . . . 5 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → (1 < 2 ↔ (√‘1) < (√‘2)))
83, 4, 5, 6, 7mp4an 424 . . . 4 (1 < 2 ↔ (√‘1) < (√‘2))
92, 8mpbi 144 . . 3 (√‘1) < (√‘2)
101, 9eqbrtrri 3959 . 2 1 < (√‘2)
11 2lt4 8917 . . . 4 2 < 4
12 4re 8821 . . . . 5 4 ∈ ℝ
13 0re 7790 . . . . . 6 0 ∈ ℝ
14 4pos 8841 . . . . . 6 0 < 4
1513, 12, 14ltleii 7890 . . . . 5 0 ≤ 4
16 sqrtlt 10841 . . . . 5 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4)))
175, 6, 12, 15, 16mp4an 424 . . . 4 (2 < 4 ↔ (√‘2) < (√‘4))
1811, 17mpbi 144 . . 3 (√‘2) < (√‘4)
19 sqrt4 10851 . . 3 (√‘4) = 2
2018, 19breqtri 3961 . 2 (√‘2) < 2
2110, 20pm3.2i 270 1 (1 < (√‘2) ∧ (√‘2) < 2)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 1481   class class class wbr 3937  cfv 5131  cr 7643  0cc0 7644  1c1 7645   < clt 7824  cle 7825  2c2 8795  4c4 8797  csqrt 10800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-rsqrt 10802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator