![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fmptapd | GIF version |
Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
Ref | Expression |
---|---|
fmptapd.0a | ⊢ (𝜑 → 𝐴 ∈ V) |
fmptapd.0b | ⊢ (𝜑 → 𝐵 ∈ V) |
fmptapd.1 | ⊢ (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆) |
fmptapd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
fmptapd | ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥 ∈ 𝑆 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptapd.0a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | fmptapd.0b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) | |
3 | fmptsn 5707 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | |
4 | 1, 2, 3 | syl2anc 411 | . . . 4 ⊢ (𝜑 → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵)) |
5 | elsni 3612 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
6 | fmptapd.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐵) | |
7 | 5, 6 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → 𝐶 = 𝐵) |
8 | 7 | mpteq2dva 4095 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵)) |
9 | 4, 8 | eqtr4d 2213 | . . 3 ⊢ (𝜑 → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐶)) |
10 | 9 | uneq2d 3291 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))) |
11 | mptun 5349 | . . 3 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) | |
12 | 11 | a1i 9 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))) |
13 | fmptapd.1 | . . 3 ⊢ (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆) | |
14 | 13 | mpteq1d 4090 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥 ∈ 𝑆 ↦ 𝐶)) |
15 | 10, 12, 14 | 3eqtr2d 2216 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥 ∈ 𝑆 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∪ cun 3129 {csn 3594 ⟨cop 3597 ↦ cmpt 4066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 |
This theorem is referenced by: fmptpr 5710 |
Copyright terms: Public domain | W3C validator |