| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fmptapd | GIF version | ||
| Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| fmptapd.0a | ⊢ (𝜑 → 𝐴 ∈ V) | 
| fmptapd.0b | ⊢ (𝜑 → 𝐵 ∈ V) | 
| fmptapd.1 | ⊢ (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆) | 
| fmptapd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐵) | 
| Ref | Expression | 
|---|---|
| fmptapd | ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fmptapd.0a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 2 | fmptapd.0b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 3 | fmptsn 5751 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 411 | . . . 4 ⊢ (𝜑 → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | 
| 5 | elsni 3640 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 6 | fmptapd.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐵) | |
| 7 | 5, 6 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → 𝐶 = 𝐵) | 
| 8 | 7 | mpteq2dva 4123 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵)) | 
| 9 | 4, 8 | eqtr4d 2232 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐶)) | 
| 10 | 9 | uneq2d 3317 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))) | 
| 11 | mptun 5389 | . . 3 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) | |
| 12 | 11 | a1i 9 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))) | 
| 13 | fmptapd.1 | . . 3 ⊢ (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆) | |
| 14 | 13 | mpteq1d 4118 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥 ∈ 𝑆 ↦ 𝐶)) | 
| 15 | 10, 12, 14 | 3eqtr2d 2235 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 {csn 3622 〈cop 3625 ↦ cmpt 4094 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 | 
| This theorem is referenced by: fmptpr 5754 | 
| Copyright terms: Public domain | W3C validator |