Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fmptapd | GIF version |
Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
Ref | Expression |
---|---|
fmptapd.0a | ⊢ (𝜑 → 𝐴 ∈ V) |
fmptapd.0b | ⊢ (𝜑 → 𝐵 ∈ V) |
fmptapd.1 | ⊢ (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆) |
fmptapd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
fmptapd | ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptapd.0a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | fmptapd.0b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) | |
3 | fmptsn 5674 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | |
4 | 1, 2, 3 | syl2anc 409 | . . . 4 ⊢ (𝜑 → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) |
5 | elsni 3594 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
6 | fmptapd.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐵) | |
7 | 5, 6 | sylan2 284 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → 𝐶 = 𝐵) |
8 | 7 | mpteq2dva 4072 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵)) |
9 | 4, 8 | eqtr4d 2201 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐶)) |
10 | 9 | uneq2d 3276 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))) |
11 | mptun 5319 | . . 3 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) | |
12 | 11 | a1i 9 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))) |
13 | fmptapd.1 | . . 3 ⊢ (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆) | |
14 | 13 | mpteq1d 4067 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥 ∈ 𝑆 ↦ 𝐶)) |
15 | 10, 12, 14 | 3eqtr2d 2204 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∪ cun 3114 {csn 3576 〈cop 3579 ↦ cmpt 4043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: fmptpr 5677 |
Copyright terms: Public domain | W3C validator |