| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptapd | GIF version | ||
| Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| fmptapd.0a | ⊢ (𝜑 → 𝐴 ∈ V) |
| fmptapd.0b | ⊢ (𝜑 → 𝐵 ∈ V) |
| fmptapd.1 | ⊢ (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆) |
| fmptapd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| fmptapd | ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptapd.0a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 2 | fmptapd.0b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 3 | fmptsn 5772 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 411 | . . . 4 ⊢ (𝜑 → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) |
| 5 | elsni 3650 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 6 | fmptapd.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐵) | |
| 7 | 5, 6 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → 𝐶 = 𝐵) |
| 8 | 7 | mpteq2dva 4133 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵)) |
| 9 | 4, 8 | eqtr4d 2240 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐶)) |
| 10 | 9 | uneq2d 3326 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))) |
| 11 | mptun 5406 | . . 3 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) | |
| 12 | 11 | a1i 9 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))) |
| 13 | fmptapd.1 | . . 3 ⊢ (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆) | |
| 14 | 13 | mpteq1d 4128 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥 ∈ 𝑆 ↦ 𝐶)) |
| 15 | 10, 12, 14 | 3eqtr2d 2243 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∪ cun 3163 {csn 3632 〈cop 3635 ↦ cmpt 4104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 |
| This theorem is referenced by: fmptpr 5775 |
| Copyright terms: Public domain | W3C validator |