| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1 | GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq1 | ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5405 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 2 | rneq 4947 | . . . 4 ⊢ (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺) | |
| 3 | 2 | sseq1d 3253 | . . 3 ⊢ (𝐹 = 𝐺 → (ran 𝐹 ⊆ 𝐵 ↔ ran 𝐺 ⊆ 𝐵)) |
| 4 | 1, 3 | anbi12d 473 | . 2 ⊢ (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵))) |
| 5 | df-f 5318 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 6 | df-f 5318 | . 2 ⊢ (𝐺:𝐴⟶𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ⊆ wss 3197 ran crn 4717 Fn wfn 5309 ⟶wf 5310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-fun 5316 df-fn 5317 df-f 5318 |
| This theorem is referenced by: feq1d 5456 feq1i 5462 f00 5513 f0bi 5514 f0dom0 5515 fconstg 5518 f1eq1 5522 fconst2g 5847 tfrcllemsucfn 6489 tfrcllemsucaccv 6490 tfrcllembxssdm 6492 tfrcllembfn 6493 tfrcllemex 6496 tfrcllemaccex 6497 tfrcllemres 6498 tfrcl 6500 elmapg 6798 ac6sfi 7048 updjud 7237 finomni 7295 exmidomni 7297 mkvprop 7313 1fv 10323 seqf1oglem2 10729 seqf1og 10730 iswrd 11060 isgrpinv 13573 isghm 13766 upxp 14931 txcn 14934 plyf 15396 dceqnconst 16359 dcapnconst 16360 |
| Copyright terms: Public domain | W3C validator |