ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1 GIF version

Theorem feq1 5191
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq1 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))

Proof of Theorem feq1
StepHypRef Expression
1 fneq1 5147 . . 3 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
2 rneq 4704 . . . 4 (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺)
32sseq1d 3076 . . 3 (𝐹 = 𝐺 → (ran 𝐹𝐵 ↔ ran 𝐺𝐵))
41, 3anbi12d 460 . 2 (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵)))
5 df-f 5063 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
6 df-f 5063 . 2 (𝐺:𝐴𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵))
74, 5, 63bitr4g 222 1 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wss 3021  ran crn 4478   Fn wfn 5054  wf 5055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-fun 5061  df-fn 5062  df-f 5063
This theorem is referenced by:  feq1d  5195  feq1i  5201  f00  5250  f0bi  5251  f0dom0  5252  fconstg  5255  f1eq1  5259  fconst2g  5567  tfrcllemsucfn  6180  tfrcllemsucaccv  6181  tfrcllembxssdm  6183  tfrcllembfn  6184  tfrcllemex  6187  tfrcllemaccex  6188  tfrcllemres  6189  tfrcl  6191  elmapg  6485  ac6sfi  6721  updjud  6882  finomni  6924  exmidomni  6926  mkvprop  6943  1fv  9757  upxp  12222  txcn  12225
  Copyright terms: Public domain W3C validator