| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1 | GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq1 | ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5368 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 2 | rneq 4911 | . . . 4 ⊢ (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺) | |
| 3 | 2 | sseq1d 3224 | . . 3 ⊢ (𝐹 = 𝐺 → (ran 𝐹 ⊆ 𝐵 ↔ ran 𝐺 ⊆ 𝐵)) |
| 4 | 1, 3 | anbi12d 473 | . 2 ⊢ (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵))) |
| 5 | df-f 5281 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 6 | df-f 5281 | . 2 ⊢ (𝐺:𝐴⟶𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ⊆ wss 3168 ran crn 4681 Fn wfn 5272 ⟶wf 5273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-fun 5279 df-fn 5280 df-f 5281 |
| This theorem is referenced by: feq1d 5419 feq1i 5425 f00 5476 f0bi 5477 f0dom0 5478 fconstg 5481 f1eq1 5485 fconst2g 5809 tfrcllemsucfn 6449 tfrcllemsucaccv 6450 tfrcllembxssdm 6452 tfrcllembfn 6453 tfrcllemex 6456 tfrcllemaccex 6457 tfrcllemres 6458 tfrcl 6460 elmapg 6758 ac6sfi 7007 updjud 7196 finomni 7254 exmidomni 7256 mkvprop 7272 1fv 10274 seqf1oglem2 10678 seqf1og 10679 iswrd 11009 isgrpinv 13436 isghm 13629 upxp 14794 txcn 14797 plyf 15259 dceqnconst 16114 dcapnconst 16115 |
| Copyright terms: Public domain | W3C validator |