Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feq1 | GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq1 | ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 5286 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
2 | rneq 4838 | . . . 4 ⊢ (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺) | |
3 | 2 | sseq1d 3176 | . . 3 ⊢ (𝐹 = 𝐺 → (ran 𝐹 ⊆ 𝐵 ↔ ran 𝐺 ⊆ 𝐵)) |
4 | 1, 3 | anbi12d 470 | . 2 ⊢ (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵))) |
5 | df-f 5202 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
6 | df-f 5202 | . 2 ⊢ (𝐺:𝐴⟶𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ⊆ wss 3121 ran crn 4612 Fn wfn 5193 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 |
This theorem is referenced by: feq1d 5334 feq1i 5340 f00 5389 f0bi 5390 f0dom0 5391 fconstg 5394 f1eq1 5398 fconst2g 5711 tfrcllemsucfn 6332 tfrcllemsucaccv 6333 tfrcllembxssdm 6335 tfrcllembfn 6336 tfrcllemex 6339 tfrcllemaccex 6340 tfrcllemres 6341 tfrcl 6343 elmapg 6639 ac6sfi 6876 updjud 7059 finomni 7116 exmidomni 7118 mkvprop 7134 1fv 10095 isgrpinv 12756 upxp 13066 txcn 13069 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |