![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > feq1 | GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq1 | ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 5306 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
2 | rneq 4856 | . . . 4 ⊢ (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺) | |
3 | 2 | sseq1d 3186 | . . 3 ⊢ (𝐹 = 𝐺 → (ran 𝐹 ⊆ 𝐵 ↔ ran 𝐺 ⊆ 𝐵)) |
4 | 1, 3 | anbi12d 473 | . 2 ⊢ (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵))) |
5 | df-f 5222 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
6 | df-f 5222 | . 2 ⊢ (𝐺:𝐴⟶𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ⊆ wss 3131 ran crn 4629 Fn wfn 5213 ⟶wf 5214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 |
This theorem is referenced by: feq1d 5354 feq1i 5360 f00 5409 f0bi 5410 f0dom0 5411 fconstg 5414 f1eq1 5418 fconst2g 5733 tfrcllemsucfn 6356 tfrcllemsucaccv 6357 tfrcllembxssdm 6359 tfrcllembfn 6360 tfrcllemex 6363 tfrcllemaccex 6364 tfrcllemres 6365 tfrcl 6367 elmapg 6663 ac6sfi 6900 updjud 7083 finomni 7140 exmidomni 7142 mkvprop 7158 1fv 10141 isgrpinv 12931 upxp 13811 txcn 13814 dceqnconst 14846 dcapnconst 14847 |
Copyright terms: Public domain | W3C validator |