ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1 GIF version

Theorem feq1 5452
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq1 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))

Proof of Theorem feq1
StepHypRef Expression
1 fneq1 5405 . . 3 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
2 rneq 4947 . . . 4 (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺)
32sseq1d 3253 . . 3 (𝐹 = 𝐺 → (ran 𝐹𝐵 ↔ ran 𝐺𝐵))
41, 3anbi12d 473 . 2 (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵)))
5 df-f 5318 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
6 df-f 5318 . 2 (𝐺:𝐴𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵))
74, 5, 63bitr4g 223 1 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wss 3197  ran crn 4717   Fn wfn 5309  wf 5310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-fun 5316  df-fn 5317  df-f 5318
This theorem is referenced by:  feq1d  5456  feq1i  5462  f00  5513  f0bi  5514  f0dom0  5515  fconstg  5518  f1eq1  5522  fconst2g  5847  tfrcllemsucfn  6489  tfrcllemsucaccv  6490  tfrcllembxssdm  6492  tfrcllembfn  6493  tfrcllemex  6496  tfrcllemaccex  6497  tfrcllemres  6498  tfrcl  6500  elmapg  6798  ac6sfi  7048  updjud  7237  finomni  7295  exmidomni  7297  mkvprop  7313  1fv  10323  seqf1oglem2  10729  seqf1og  10730  iswrd  11060  isgrpinv  13573  isghm  13766  upxp  14931  txcn  14934  plyf  15396  dceqnconst  16359  dcapnconst  16360
  Copyright terms: Public domain W3C validator