| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvpr1g | GIF version | ||
| Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| fvpr1g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3673 | . . . . 5 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
| 2 | 1 | fveq1i 5627 | . . . 4 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) |
| 3 | necom 2484 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 4 | fvunsng 5832 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ≠ 𝐴) → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) | |
| 5 | 3, 4 | sylan2b 287 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 6 | 2, 5 | eqtrid 2274 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 7 | 6 | 3adant2 1040 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 8 | fvsng 5834 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({〈𝐴, 𝐶〉}‘𝐴) = 𝐶) | |
| 9 | 8 | 3adant3 1041 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉}‘𝐴) = 𝐶) |
| 10 | 7, 9 | eqtrd 2262 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∪ cun 3195 {csn 3666 {cpr 3667 〈cop 3669 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 |
| This theorem is referenced by: fvtp1g 5846 fvpr0o 13369 |
| Copyright terms: Public domain | W3C validator |