Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvtp2g | GIF version |
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
Ref | Expression |
---|---|
fvtp2g | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tprot 3676 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉} | |
2 | 1 | fveq1i 5497 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) |
3 | necom 2424 | . . . 4 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
4 | fvtp1g 5704 | . . . . . 6 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴)) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸) | |
5 | 4 | expcom 115 | . . . . 5 ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴) → ((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸)) |
6 | 5 | ancoms 266 | . . . 4 ⊢ ((𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶) → ((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸)) |
7 | 3, 6 | sylanb 282 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸)) |
8 | 7 | impcom 124 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸) |
9 | 2, 8 | eqtrid 2215 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 {ctp 3585 〈cop 3586 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-tp 3591 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 |
This theorem is referenced by: fvtp3g 5706 |
Copyright terms: Public domain | W3C validator |