| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvtp2g | GIF version | ||
| Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| fvtp2g | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tprot 3759 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉} | |
| 2 | 1 | fveq1i 5624 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) |
| 3 | necom 2484 | . . . 4 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 4 | fvtp1g 5840 | . . . . . 6 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴)) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸) | |
| 5 | 4 | expcom 116 | . . . . 5 ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴) → ((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸)) |
| 6 | 5 | ancoms 268 | . . . 4 ⊢ ((𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶) → ((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸)) |
| 7 | 3, 6 | sylanb 284 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸)) |
| 8 | 7 | impcom 125 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸) |
| 9 | 2, 8 | eqtrid 2274 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 {ctp 3668 〈cop 3669 ‘cfv 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-res 4728 df-iota 5274 df-fun 5316 df-fv 5322 |
| This theorem is referenced by: fvtp3g 5842 imasplusg 13327 |
| Copyright terms: Public domain | W3C validator |