| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndmdifcom | GIF version | ||
| Description: The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| fndmdifcom | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = dom (𝐺 ∖ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necom 2459 | . . . 4 ⊢ ((𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ (𝐺‘𝑥) ≠ (𝐹‘𝑥)) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ (𝐺‘𝑥) ≠ (𝐹‘𝑥))) |
| 3 | 2 | rabbiia 2756 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐺‘𝑥) ≠ (𝐹‘𝑥)} |
| 4 | fndmdif 5684 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)}) | |
| 5 | fndmdif 5684 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐹 Fn 𝐴) → dom (𝐺 ∖ 𝐹) = {𝑥 ∈ 𝐴 ∣ (𝐺‘𝑥) ≠ (𝐹‘𝑥)}) | |
| 6 | 5 | ancoms 268 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐺 ∖ 𝐹) = {𝑥 ∈ 𝐴 ∣ (𝐺‘𝑥) ≠ (𝐹‘𝑥)}) |
| 7 | 3, 4, 6 | 3eqtr4a 2263 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = dom (𝐺 ∖ 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 {crab 2487 ∖ cdif 3162 dom cdm 4674 Fn wfn 5265 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |