ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2lem GIF version

Theorem isprm2lem 12482
Description: Lemma for isprm2 12483. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
Distinct variable group:   𝑃,𝑛

Proof of Theorem isprm2lem
StepHypRef Expression
1 simplr 528 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 𝑃 ≠ 1)
21necomd 2463 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 1 ≠ 𝑃)
3 simpr 110 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o)
4 nnz 9398 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
5 1dvds 12160 . . . . . . . 8 (𝑃 ∈ ℤ → 1 ∥ 𝑃)
64, 5syl 14 . . . . . . 7 (𝑃 ∈ ℕ → 1 ∥ 𝑃)
76ad2antrr 488 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 1 ∥ 𝑃)
8 1nn 9054 . . . . . . 7 1 ∈ ℕ
9 breq1 4050 . . . . . . . 8 (𝑛 = 1 → (𝑛𝑃 ↔ 1 ∥ 𝑃))
109elrab3 2931 . . . . . . 7 (1 ∈ ℕ → (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 1 ∥ 𝑃))
118, 10ax-mp 5 . . . . . 6 (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 1 ∥ 𝑃)
127, 11sylibr 134 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
13 iddvds 12159 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃𝑃)
144, 13syl 14 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃𝑃)
1514ad2antrr 488 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 𝑃𝑃)
16 breq1 4050 . . . . . . . 8 (𝑛 = 𝑃 → (𝑛𝑃𝑃𝑃))
1716elrab3 2931 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 𝑃𝑃))
1817ad2antrr 488 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 𝑃𝑃))
1915, 18mpbird 167 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
20 en2eqpr 7011 . . . . 5 (({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ∧ 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ∧ 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃}) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
213, 12, 19, 20syl3anc 1250 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
222, 21mpd 13 . . 3 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃})
2322ex 115 . 2 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
24 necom 2461 . . . 4 (1 ≠ 𝑃𝑃 ≠ 1)
25 pr2ne 7307 . . . . . 6 ((1 ∈ ℕ ∧ 𝑃 ∈ ℕ) → ({1, 𝑃} ≈ 2o ↔ 1 ≠ 𝑃))
268, 25mpan 424 . . . . 5 (𝑃 ∈ ℕ → ({1, 𝑃} ≈ 2o ↔ 1 ≠ 𝑃))
2726biimpar 297 . . . 4 ((𝑃 ∈ ℕ ∧ 1 ≠ 𝑃) → {1, 𝑃} ≈ 2o)
2824, 27sylan2br 288 . . 3 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → {1, 𝑃} ≈ 2o)
29 breq1 4050 . . 3 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {1, 𝑃} ≈ 2o))
3028, 29syl5ibrcom 157 . 2 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
3123, 30impbid 129 1 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wne 2377  {crab 2489  {cpr 3635   class class class wbr 4047  2oc2o 6503  cen 6832  1c1 7933  cn 9043  cz 9379  cdvds 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1o 6509  df-2o 6510  df-er 6627  df-en 6835  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-z 9380  df-dvds 12143
This theorem is referenced by:  isprm2  12483
  Copyright terms: Public domain W3C validator