ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2lem GIF version

Theorem isprm2lem 11191
Description: Lemma for isprm2 11192. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
Distinct variable group:   𝑃,𝑛

Proof of Theorem isprm2lem
StepHypRef Expression
1 simplr 497 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 𝑃 ≠ 1)
21necomd 2341 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 1 ≠ 𝑃)
3 simpr 108 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜)
4 nnz 8739 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
5 1dvds 10903 . . . . . . . 8 (𝑃 ∈ ℤ → 1 ∥ 𝑃)
64, 5syl 14 . . . . . . 7 (𝑃 ∈ ℕ → 1 ∥ 𝑃)
76ad2antrr 472 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 1 ∥ 𝑃)
8 1nn 8405 . . . . . . 7 1 ∈ ℕ
9 breq1 3840 . . . . . . . 8 (𝑛 = 1 → (𝑛𝑃 ↔ 1 ∥ 𝑃))
109elrab3 2770 . . . . . . 7 (1 ∈ ℕ → (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 1 ∥ 𝑃))
118, 10ax-mp 7 . . . . . 6 (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 1 ∥ 𝑃)
127, 11sylibr 132 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
13 iddvds 10902 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃𝑃)
144, 13syl 14 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃𝑃)
1514ad2antrr 472 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 𝑃𝑃)
16 breq1 3840 . . . . . . . 8 (𝑛 = 𝑃 → (𝑛𝑃𝑃𝑃))
1716elrab3 2770 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 𝑃𝑃))
1817ad2antrr 472 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 𝑃𝑃))
1915, 18mpbird 165 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
20 en2eqpr 6603 . . . . 5 (({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ∧ 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ∧ 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃}) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
213, 12, 19, 20syl3anc 1174 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
222, 21mpd 13 . . 3 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃})
2322ex 113 . 2 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
24 necom 2339 . . . 4 (1 ≠ 𝑃𝑃 ≠ 1)
25 pr2ne 6799 . . . . . 6 ((1 ∈ ℕ ∧ 𝑃 ∈ ℕ) → ({1, 𝑃} ≈ 2𝑜 ↔ 1 ≠ 𝑃))
268, 25mpan 415 . . . . 5 (𝑃 ∈ ℕ → ({1, 𝑃} ≈ 2𝑜 ↔ 1 ≠ 𝑃))
2726biimpar 291 . . . 4 ((𝑃 ∈ ℕ ∧ 1 ≠ 𝑃) → {1, 𝑃} ≈ 2𝑜)
2824, 27sylan2br 282 . . 3 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → {1, 𝑃} ≈ 2𝑜)
29 breq1 3840 . . 3 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {1, 𝑃} ≈ 2𝑜))
3028, 29syl5ibrcom 155 . 2 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜))
3123, 30impbid 127 1 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wcel 1438  wne 2255  {crab 2363  {cpr 3442   class class class wbr 3837  2𝑜c2o 6157  cen 6435  1c1 7330  cn 8394  cz 8720  cdvds 10889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1o 6163  df-2o 6164  df-er 6272  df-en 6438  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-z 8721  df-dvds 10890
This theorem is referenced by:  isprm2  11192
  Copyright terms: Public domain W3C validator