![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isprm2lem | GIF version |
Description: Lemma for isprm2 12120. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
isprm2lem | ⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 528 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) → 𝑃 ≠ 1) | |
2 | 1 | necomd 2433 | . . . 4 ⊢ (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) → 1 ≠ 𝑃) |
3 | simpr 110 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) | |
4 | nnz 9275 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℤ) | |
5 | 1dvds 11815 | . . . . . . . 8 ⊢ (𝑃 ∈ ℤ → 1 ∥ 𝑃) | |
6 | 4, 5 | syl 14 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 1 ∥ 𝑃) |
7 | 6 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) → 1 ∥ 𝑃) |
8 | 1nn 8933 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
9 | breq1 4008 | . . . . . . . 8 ⊢ (𝑛 = 1 → (𝑛 ∥ 𝑃 ↔ 1 ∥ 𝑃)) | |
10 | 9 | elrab3 2896 | . . . . . . 7 ⊢ (1 ∈ ℕ → (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ↔ 1 ∥ 𝑃)) |
11 | 8, 10 | ax-mp 5 | . . . . . 6 ⊢ (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ↔ 1 ∥ 𝑃) |
12 | 7, 11 | sylibr 134 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}) |
13 | iddvds 11814 | . . . . . . . 8 ⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 𝑃) | |
14 | 4, 13 | syl 14 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ∥ 𝑃) |
15 | 14 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) → 𝑃 ∥ 𝑃) |
16 | breq1 4008 | . . . . . . . 8 ⊢ (𝑛 = 𝑃 → (𝑛 ∥ 𝑃 ↔ 𝑃 ∥ 𝑃)) | |
17 | 16 | elrab3 2896 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ↔ 𝑃 ∥ 𝑃)) |
18 | 17 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ↔ 𝑃 ∥ 𝑃)) |
19 | 15, 18 | mpbird 167 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) → 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}) |
20 | en2eqpr 6910 | . . . . 5 ⊢ (({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ∧ 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ∧ 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) | |
21 | 3, 12, 19, 20 | syl3anc 1238 | . . . 4 ⊢ (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) |
22 | 2, 21 | mpd 13 | . . 3 ⊢ (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃}) |
23 | 22 | ex 115 | . 2 ⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) |
24 | necom 2431 | . . . 4 ⊢ (1 ≠ 𝑃 ↔ 𝑃 ≠ 1) | |
25 | pr2ne 7194 | . . . . . 6 ⊢ ((1 ∈ ℕ ∧ 𝑃 ∈ ℕ) → ({1, 𝑃} ≈ 2o ↔ 1 ≠ 𝑃)) | |
26 | 8, 25 | mpan 424 | . . . . 5 ⊢ (𝑃 ∈ ℕ → ({1, 𝑃} ≈ 2o ↔ 1 ≠ 𝑃)) |
27 | 26 | biimpar 297 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 1 ≠ 𝑃) → {1, 𝑃} ≈ 2o) |
28 | 24, 27 | sylan2br 288 | . . 3 ⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → {1, 𝑃} ≈ 2o) |
29 | breq1 4008 | . . 3 ⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃} → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ↔ {1, 𝑃} ≈ 2o)) | |
30 | 28, 29 | syl5ibrcom 157 | . 2 ⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃} → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
31 | 23, 30 | impbid 129 | 1 ⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 {crab 2459 {cpr 3595 class class class wbr 4005 2oc2o 6414 ≈ cen 6741 1c1 7815 ℕcn 8922 ℤcz 9256 ∥ cdvds 11797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1o 6420 df-2o 6421 df-er 6538 df-en 6744 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-z 9257 df-dvds 11798 |
This theorem is referenced by: isprm2 12120 |
Copyright terms: Public domain | W3C validator |