Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvpr2 | GIF version |
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
Ref | Expression |
---|---|
fvpr2.1 | ⊢ 𝐵 ∈ V |
fvpr2.2 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
fvpr2 | ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 3636 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉} | |
2 | 1 | fveq1i 5470 | . 2 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = ({〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉}‘𝐵) |
3 | necom 2411 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
4 | fvpr2.1 | . . . 4 ⊢ 𝐵 ∈ V | |
5 | fvpr2.2 | . . . 4 ⊢ 𝐷 ∈ V | |
6 | 4, 5 | fvpr1 5672 | . . 3 ⊢ (𝐵 ≠ 𝐴 → ({〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉}‘𝐵) = 𝐷) |
7 | 3, 6 | sylbi 120 | . 2 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉}‘𝐵) = 𝐷) |
8 | 2, 7 | syl5eq 2202 | 1 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 Vcvv 2712 {cpr 3561 〈cop 3563 ‘cfv 5171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-br 3967 df-opab 4027 df-id 4254 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-res 4599 df-iota 5136 df-fun 5173 df-fv 5179 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |