![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvtp2 | GIF version |
Description: The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
fvtp2.1 | ⊢ 𝐵 ∈ V |
fvtp2.4 | ⊢ 𝐸 ∈ V |
Ref | Expression |
---|---|
fvtp2 | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tprot 3687 | . . 3 ⊢ {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩} | |
2 | 1 | fveq1i 5518 | . 2 ⊢ ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) |
3 | necom 2431 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
4 | fvtp2.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
5 | fvtp2.4 | . . . . 5 ⊢ 𝐸 ∈ V | |
6 | 4, 5 | fvtp1 5729 | . . . 4 ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸) |
7 | 6 | ancoms 268 | . . 3 ⊢ ((𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸) |
8 | 3, 7 | sylanb 284 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸) |
9 | 2, 8 | eqtrid 2222 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 Vcvv 2739 {ctp 3596 ⟨cop 3597 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-tp 3602 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 |
This theorem is referenced by: fvtp3 5731 |
Copyright terms: Public domain | W3C validator |