![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvtp2 | GIF version |
Description: The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
fvtp2.1 | ⊢ 𝐵 ∈ V |
fvtp2.4 | ⊢ 𝐸 ∈ V |
Ref | Expression |
---|---|
fvtp2 | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tprot 3711 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉} | |
2 | 1 | fveq1i 5555 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) |
3 | necom 2448 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
4 | fvtp2.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
5 | fvtp2.4 | . . . . 5 ⊢ 𝐸 ∈ V | |
6 | 4, 5 | fvtp1 5769 | . . . 4 ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸) |
7 | 6 | ancoms 268 | . . 3 ⊢ ((𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸) |
8 | 3, 7 | sylanb 284 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸) |
9 | 2, 8 | eqtrid 2238 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 Vcvv 2760 {ctp 3620 〈cop 3621 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 |
This theorem is referenced by: fvtp3 5771 |
Copyright terms: Public domain | W3C validator |