| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvpr1 | GIF version | ||
| Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
| Ref | Expression |
|---|---|
| fvpr1.1 | ⊢ 𝐴 ∈ V |
| fvpr1.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| fvpr1 | ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3645 | . . . 4 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
| 2 | 1 | fveq1i 5590 | . . 3 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) |
| 3 | necom 2461 | . . . 4 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 4 | fvpr1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 5 | fvunsng 5791 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ≠ 𝐴) → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝐵 ≠ 𝐴 → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 7 | 3, 6 | sylbi 121 | . . 3 ⊢ (𝐴 ≠ 𝐵 → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 8 | 2, 7 | eqtrid 2251 | . 2 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 9 | fvpr1.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 10 | 4, 9 | fvsn 5792 | . 2 ⊢ ({〈𝐴, 𝐶〉}‘𝐴) = 𝐶 |
| 11 | 8, 10 | eqtrdi 2255 | 1 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 Vcvv 2773 ∪ cun 3168 {csn 3638 {cpr 3639 〈cop 3641 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-res 4695 df-iota 5241 df-fun 5282 df-fv 5288 |
| This theorem is referenced by: fvpr2 5802 |
| Copyright terms: Public domain | W3C validator |