ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr1 GIF version

Theorem fvpr1 5700
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
fvpr1.1 𝐴 ∈ V
fvpr1.2 𝐶 ∈ V
Assertion
Ref Expression
fvpr1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)

Proof of Theorem fvpr1
StepHypRef Expression
1 df-pr 3590 . . . 4 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
21fveq1i 5497 . . 3 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴)
3 necom 2424 . . . 4 (𝐴𝐵𝐵𝐴)
4 fvpr1.1 . . . . 5 𝐴 ∈ V
5 fvunsng 5690 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐴) → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
64, 5mpan 422 . . . 4 (𝐵𝐴 → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
73, 6sylbi 120 . . 3 (𝐴𝐵 → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
82, 7eqtrid 2215 . 2 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
9 fvpr1.2 . . 3 𝐶 ∈ V
104, 9fvsn 5691 . 2 ({⟨𝐴, 𝐶⟩}‘𝐴) = 𝐶
118, 10eqtrdi 2219 1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wne 2340  Vcvv 2730  cun 3119  {csn 3583  {cpr 3584  cop 3586  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by:  fvpr2  5701
  Copyright terms: Public domain W3C validator