ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr1 GIF version

Theorem fvpr1 5624
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
fvpr1.1 𝐴 ∈ V
fvpr1.2 𝐶 ∈ V
Assertion
Ref Expression
fvpr1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)

Proof of Theorem fvpr1
StepHypRef Expression
1 df-pr 3534 . . . 4 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
21fveq1i 5422 . . 3 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴)
3 necom 2392 . . . 4 (𝐴𝐵𝐵𝐴)
4 fvpr1.1 . . . . 5 𝐴 ∈ V
5 fvunsng 5614 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐴) → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
64, 5mpan 420 . . . 4 (𝐵𝐴 → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
73, 6sylbi 120 . . 3 (𝐴𝐵 → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
82, 7syl5eq 2184 . 2 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
9 fvpr1.2 . . 3 𝐶 ∈ V
104, 9fvsn 5615 . 2 ({⟨𝐴, 𝐶⟩}‘𝐴) = 𝐶
118, 10syl6eq 2188 1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  wne 2308  Vcvv 2686  cun 3069  {csn 3527  {cpr 3528  cop 3530  cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fv 5131
This theorem is referenced by:  fvpr2  5625
  Copyright terms: Public domain W3C validator