![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvtp3g | GIF version |
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
Ref | Expression |
---|---|
fvtp3g | ⊢ (((𝐶 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tprot 3541 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉} | |
2 | 1 | fveq1i 5321 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) |
3 | necom 2340 | . . . . 5 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) | |
4 | fvtp2g 5522 | . . . . . 6 ⊢ (((𝐶 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) ∧ (𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴)) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) = 𝐹) | |
5 | 4 | expcom 115 | . . . . 5 ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴) → ((𝐶 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) = 𝐹)) |
6 | 3, 5 | sylan2b 282 | . . . 4 ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶) → ((𝐶 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) = 𝐹)) |
7 | 6 | ancoms 265 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ((𝐶 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) = 𝐹)) |
8 | 7 | impcom 124 | . 2 ⊢ (((𝐶 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) = 𝐹) |
9 | 2, 8 | syl5eq 2133 | 1 ⊢ (((𝐶 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∈ wcel 1439 ≠ wne 2256 {ctp 3454 〈cop 3455 ‘cfv 5030 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-pow 4017 ax-pr 4047 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-v 2624 df-sbc 2844 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-nul 3290 df-pw 3437 df-sn 3458 df-pr 3459 df-tp 3460 df-op 3461 df-uni 3662 df-br 3854 df-opab 3908 df-id 4131 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-res 4466 df-iota 4995 df-fun 5032 df-fv 5038 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |