ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodv2 GIF version

Theorem ovmpodv2 6052
Description: Alternate deduction version of ovmpo 6054, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpodv2.1 (𝜑𝐴𝐶)
ovmpodv2.2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
ovmpodv2.3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
ovmpodv2.4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
Assertion
Ref Expression
ovmpodv2 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = 𝑆))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpodv2
StepHypRef Expression
1 eqidd 2194 . . 3 (𝜑 → (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅))
2 ovmpodv2.1 . . . 4 (𝜑𝐴𝐶)
3 ovmpodv2.2 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
4 ovmpodv2.3 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
5 ovmpodv2.4 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
65eqeq2d 2205 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
76biimpd 144 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
8 nfmpo1 5985 . . . 4 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
9 nfcv 2336 . . . . . 6 𝑥𝐴
10 nfcv 2336 . . . . . 6 𝑥𝐵
119, 8, 10nfov 5948 . . . . 5 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
1211nfeq1 2346 . . . 4 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
13 nfmpo2 5986 . . . 4 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
14 nfcv 2336 . . . . . 6 𝑦𝐴
15 nfcv 2336 . . . . . 6 𝑦𝐵
1614, 13, 15nfov 5948 . . . . 5 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
1716nfeq1 2346 . . . 4 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
182, 3, 4, 7, 8, 12, 13, 17ovmpodf 6050 . . 3 (𝜑 → ((𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
191, 18mpd 13 . 2 (𝜑 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
20 oveq 5924 . . 3 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
2120eqeq1d 2202 . 2 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → ((𝐴𝐹𝐵) = 𝑆 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
2219, 21syl5ibrcom 157 1 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  (class class class)co 5918  cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator