ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodv2 GIF version

Theorem ovmpodv2 5986
Description: Alternate deduction version of ovmpo 5988, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpodv2.1 (𝜑𝐴𝐶)
ovmpodv2.2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
ovmpodv2.3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
ovmpodv2.4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
Assertion
Ref Expression
ovmpodv2 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = 𝑆))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpodv2
StepHypRef Expression
1 eqidd 2171 . . 3 (𝜑 → (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅))
2 ovmpodv2.1 . . . 4 (𝜑𝐴𝐶)
3 ovmpodv2.2 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
4 ovmpodv2.3 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
5 ovmpodv2.4 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
65eqeq2d 2182 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
76biimpd 143 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
8 nfmpo1 5920 . . . 4 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
9 nfcv 2312 . . . . . 6 𝑥𝐴
10 nfcv 2312 . . . . . 6 𝑥𝐵
119, 8, 10nfov 5883 . . . . 5 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
1211nfeq1 2322 . . . 4 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
13 nfmpo2 5921 . . . 4 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
14 nfcv 2312 . . . . . 6 𝑦𝐴
15 nfcv 2312 . . . . . 6 𝑦𝐵
1614, 13, 15nfov 5883 . . . . 5 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
1716nfeq1 2322 . . . 4 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
182, 3, 4, 7, 8, 12, 13, 17ovmpodf 5984 . . 3 (𝜑 → ((𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
191, 18mpd 13 . 2 (𝜑 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
20 oveq 5859 . . 3 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
2120eqeq1d 2179 . 2 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → ((𝐴𝐹𝐵) = 𝑆 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
2219, 21syl5ibrcom 156 1 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  (class class class)co 5853  cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator