ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodv2 GIF version

Theorem ovmpodv2 5975
Description: Alternate deduction version of ovmpo 5977, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpodv2.1 (𝜑𝐴𝐶)
ovmpodv2.2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
ovmpodv2.3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
ovmpodv2.4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
Assertion
Ref Expression
ovmpodv2 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = 𝑆))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpodv2
StepHypRef Expression
1 eqidd 2166 . . 3 (𝜑 → (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅))
2 ovmpodv2.1 . . . 4 (𝜑𝐴𝐶)
3 ovmpodv2.2 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
4 ovmpodv2.3 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
5 ovmpodv2.4 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
65eqeq2d 2177 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
76biimpd 143 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
8 nfmpo1 5909 . . . 4 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
9 nfcv 2308 . . . . . 6 𝑥𝐴
10 nfcv 2308 . . . . . 6 𝑥𝐵
119, 8, 10nfov 5872 . . . . 5 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
1211nfeq1 2318 . . . 4 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
13 nfmpo2 5910 . . . 4 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
14 nfcv 2308 . . . . . 6 𝑦𝐴
15 nfcv 2308 . . . . . 6 𝑦𝐵
1614, 13, 15nfov 5872 . . . . 5 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
1716nfeq1 2318 . . . 4 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
182, 3, 4, 7, 8, 12, 13, 17ovmpodf 5973 . . 3 (𝜑 → ((𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
191, 18mpd 13 . 2 (𝜑 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
20 oveq 5848 . . 3 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
2120eqeq1d 2174 . 2 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → ((𝐴𝐹𝐵) = 𝑆 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
2219, 21syl5ibrcom 156 1 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  (class class class)co 5842  cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator