ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval GIF version

Theorem offval 6176
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
offval (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem offval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
2 offval.3 . . . 4 (𝜑𝐴𝑉)
3 fnex 5816 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
41, 2, 3syl2anc 411 . . 3 (𝜑𝐹 ∈ V)
5 offval.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 offval.4 . . . 4 (𝜑𝐵𝑊)
7 fnex 5816 . . . 4 ((𝐺 Fn 𝐵𝐵𝑊) → 𝐺 ∈ V)
85, 6, 7syl2anc 411 . . 3 (𝜑𝐺 ∈ V)
9 fndm 5379 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
101, 9syl 14 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
11 fndm 5379 . . . . . . . 8 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
125, 11syl 14 . . . . . . 7 (𝜑 → dom 𝐺 = 𝐵)
1310, 12ineq12d 3377 . . . . . 6 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
14 offval.5 . . . . . 6 (𝐴𝐵) = 𝑆
1513, 14eqtrdi 2255 . . . . 5 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆)
1615mpteq1d 4134 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
17 inex1g 4185 . . . . . 6 (𝐴𝑉 → (𝐴𝐵) ∈ V)
1814, 17eqeltrrid 2294 . . . . 5 (𝐴𝑉𝑆 ∈ V)
19 mptexg 5819 . . . . 5 (𝑆 ∈ V → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
202, 18, 193syl 17 . . . 4 (𝜑 → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
2116, 20eqeltrd 2283 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
22 dmeq 4884 . . . . . 6 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
23 dmeq 4884 . . . . . 6 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
2422, 23ineqan12d 3378 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺))
25 fveq1 5585 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
26 fveq1 5585 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
2725, 26oveqan12d 5973 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝑅(𝑔𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
2824, 27mpteq12dv 4131 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
29 df-of 6168 . . . 4 𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
3028, 29ovmpoga 6085 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
314, 8, 21, 30syl3anc 1250 . 2 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
3214eleq2i 2273 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝑆)
33 elin 3358 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3432, 33bitr3i 186 . . . 4 (𝑥𝑆 ↔ (𝑥𝐴𝑥𝐵))
35 offval.6 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
3635adantrr 479 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → (𝐹𝑥) = 𝐶)
37 offval.7 . . . . . 6 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
3837adantrl 478 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → (𝐺𝑥) = 𝐷)
3936, 38oveq12d 5972 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝐶𝑅𝐷))
4034, 39sylan2b 287 . . 3 ((𝜑𝑥𝑆) → ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝐶𝑅𝐷))
4140mpteq2dva 4139 . 2 (𝜑 → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
4231, 16, 413eqtrd 2243 1 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  cin 3167  cmpt 4110  dom cdm 4680   Fn wfn 5272  cfv 5277  (class class class)co 5954  𝑓 cof 6166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-setind 4590
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-of 6168
This theorem is referenced by:  ofvalg  6178  off  6181  ofres  6183  offval2  6184  suppssof1  6186  ofco  6187  offveqb  6188
  Copyright terms: Public domain W3C validator