ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval GIF version

Theorem offval 5957
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
offval (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem offval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
2 offval.3 . . . 4 (𝜑𝐴𝑉)
3 fnex 5610 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
41, 2, 3syl2anc 408 . . 3 (𝜑𝐹 ∈ V)
5 offval.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 offval.4 . . . 4 (𝜑𝐵𝑊)
7 fnex 5610 . . . 4 ((𝐺 Fn 𝐵𝐵𝑊) → 𝐺 ∈ V)
85, 6, 7syl2anc 408 . . 3 (𝜑𝐺 ∈ V)
9 fndm 5192 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
101, 9syl 14 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
11 fndm 5192 . . . . . . . 8 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
125, 11syl 14 . . . . . . 7 (𝜑 → dom 𝐺 = 𝐵)
1310, 12ineq12d 3248 . . . . . 6 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
14 offval.5 . . . . . 6 (𝐴𝐵) = 𝑆
1513, 14syl6eq 2166 . . . . 5 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆)
1615mpteq1d 3983 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
17 inex1g 4034 . . . . . 6 (𝐴𝑉 → (𝐴𝐵) ∈ V)
1814, 17eqeltrrid 2205 . . . . 5 (𝐴𝑉𝑆 ∈ V)
19 mptexg 5613 . . . . 5 (𝑆 ∈ V → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
202, 18, 193syl 17 . . . 4 (𝜑 → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
2116, 20eqeltrd 2194 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
22 dmeq 4709 . . . . . 6 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
23 dmeq 4709 . . . . . 6 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
2422, 23ineqan12d 3249 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺))
25 fveq1 5388 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
26 fveq1 5388 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
2725, 26oveqan12d 5761 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝑅(𝑔𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
2824, 27mpteq12dv 3980 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
29 df-of 5950 . . . 4 𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
3028, 29ovmpoga 5868 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
314, 8, 21, 30syl3anc 1201 . 2 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
3214eleq2i 2184 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝑆)
33 elin 3229 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3432, 33bitr3i 185 . . . 4 (𝑥𝑆 ↔ (𝑥𝐴𝑥𝐵))
35 offval.6 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
3635adantrr 470 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → (𝐹𝑥) = 𝐶)
37 offval.7 . . . . . 6 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
3837adantrl 469 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → (𝐺𝑥) = 𝐷)
3936, 38oveq12d 5760 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝐶𝑅𝐷))
4034, 39sylan2b 285 . . 3 ((𝜑𝑥𝑆) → ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝐶𝑅𝐷))
4140mpteq2dva 3988 . 2 (𝜑 → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
4231, 16, 413eqtrd 2154 1 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465  Vcvv 2660  cin 3040  cmpt 3959  dom cdm 4509   Fn wfn 5088  cfv 5093  (class class class)co 5742  𝑓 cof 5948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-setind 4422
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-of 5950
This theorem is referenced by:  ofvalg  5959  off  5962  ofres  5964  offval2  5965  suppssof1  5967  ofco  5968  offveqb  5969
  Copyright terms: Public domain W3C validator