Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfvmptrab1 | GIF version |
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elfvmptrab1.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
elfvmptrab1.v | ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
Ref | Expression |
---|---|
elfvmptrab1 | ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvmptrab1.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) | |
2 | 1 | funmpt2 5227 | . . . 4 ⊢ Fun 𝐹 |
3 | funrel 5205 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel 𝐹 |
5 | relelfvdm 5518 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝑌 ∈ (𝐹‘𝑋)) → 𝑋 ∈ dom 𝐹) | |
6 | 4, 5 | mpan 421 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) → 𝑋 ∈ dom 𝐹) |
7 | 1 | dmmptss 5100 | . . . . . 6 ⊢ dom 𝐹 ⊆ 𝑉 |
8 | 7 | sseli 3138 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉) |
9 | elfvmptrab1.v | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) | |
10 | rabexg 4125 | . . . . . 6 ⊢ (⦋𝑋 / 𝑚⦌𝑀 ∈ V → {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) | |
11 | 8, 9, 10 | 3syl 17 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐹 → {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) |
12 | nfcv 2308 | . . . . . 6 ⊢ Ⅎ𝑥𝑋 | |
13 | nfsbc1v 2969 | . . . . . . 7 ⊢ Ⅎ𝑥[𝑋 / 𝑥]𝜑 | |
14 | nfcv 2308 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑀 | |
15 | 12, 14 | nfcsb 3082 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑋 / 𝑚⦌𝑀 |
16 | 13, 15 | nfrabxy 2646 | . . . . . 6 ⊢ Ⅎ𝑥{𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} |
17 | csbeq1 3048 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ⦋𝑥 / 𝑚⦌𝑀 = ⦋𝑋 / 𝑚⦌𝑀) | |
18 | sbceq1a 2960 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ [𝑋 / 𝑥]𝜑)) | |
19 | 17, 18 | rabeqbidv 2721 | . . . . . 6 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
20 | 12, 16, 19, 1 | fvmptf 5578 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) → (𝐹‘𝑋) = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
21 | 8, 11, 20 | syl2anc 409 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
22 | 21 | eleq2d 2236 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑})) |
23 | elrabi 2879 | . . . . 5 ⊢ (𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} → 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀) | |
24 | 8, 23 | anim12i 336 | . . . 4 ⊢ ((𝑋 ∈ dom 𝐹 ∧ 𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
25 | 24 | ex 114 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
26 | 22, 25 | sylbid 149 | . 2 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
27 | 6, 26 | mpcom 36 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 {crab 2448 Vcvv 2726 [wsbc 2951 ⦋csb 3045 ↦ cmpt 4043 dom cdm 4604 Rel wrel 4609 Fun wfun 5182 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: elfvmptrab 5581 |
Copyright terms: Public domain | W3C validator |