ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab1 GIF version

Theorem elfvmptrab1 5623
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab1.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
elfvmptrab1.v (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
Assertion
Ref Expression
elfvmptrab1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑦,𝑌   𝑦,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐹(𝑥,𝑦,𝑚)   𝑀(𝑚)   𝑉(𝑦,𝑚)   𝑋(𝑚)   𝑌(𝑥,𝑚)

Proof of Theorem elfvmptrab1
StepHypRef Expression
1 elfvmptrab1.f . . . . 5 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
21funmpt2 5267 . . . 4 Fun 𝐹
3 funrel 5245 . . . 4 (Fun 𝐹 → Rel 𝐹)
42, 3ax-mp 5 . . 3 Rel 𝐹
5 relelfvdm 5559 . . 3 ((Rel 𝐹𝑌 ∈ (𝐹𝑋)) → 𝑋 ∈ dom 𝐹)
64, 5mpan 424 . 2 (𝑌 ∈ (𝐹𝑋) → 𝑋 ∈ dom 𝐹)
71dmmptss 5137 . . . . . 6 dom 𝐹𝑉
87sseli 3163 . . . . 5 (𝑋 ∈ dom 𝐹𝑋𝑉)
9 elfvmptrab1.v . . . . . 6 (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
10 rabexg 4158 . . . . . 6 (𝑋 / 𝑚𝑀 ∈ V → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
118, 9, 103syl 17 . . . . 5 (𝑋 ∈ dom 𝐹 → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
12 nfcv 2329 . . . . . 6 𝑥𝑋
13 nfsbc1v 2993 . . . . . . 7 𝑥[𝑋 / 𝑥]𝜑
14 nfcv 2329 . . . . . . . 8 𝑥𝑀
1512, 14nfcsb 3106 . . . . . . 7 𝑥𝑋 / 𝑚𝑀
1613, 15nfrabxy 2668 . . . . . 6 𝑥{𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}
17 csbeq1 3072 . . . . . . 7 (𝑥 = 𝑋𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
18 sbceq1a 2984 . . . . . . 7 (𝑥 = 𝑋 → (𝜑[𝑋 / 𝑥]𝜑))
1917, 18rabeqbidv 2744 . . . . . 6 (𝑥 = 𝑋 → {𝑦𝑥 / 𝑚𝑀𝜑} = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
2012, 16, 19, 1fvmptf 5621 . . . . 5 ((𝑋𝑉 ∧ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V) → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
218, 11, 20syl2anc 411 . . . 4 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
2221eleq2d 2257 . . 3 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) ↔ 𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}))
23 elrabi 2902 . . . . 5 (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → 𝑌𝑋 / 𝑚𝑀)
248, 23anim12i 338 . . . 4 ((𝑋 ∈ dom 𝐹𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
2524ex 115 . . 3 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
2622, 25sylbid 150 . 2 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
276, 26mpcom 36 1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  {crab 2469  Vcvv 2749  [wsbc 2974  csb 3069  cmpt 4076  dom cdm 4638  Rel wrel 4643  Fun wfun 5222  cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fv 5236
This theorem is referenced by:  elfvmptrab  5624
  Copyright terms: Public domain W3C validator