| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfvmptrab1 | GIF version | ||
| Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| elfvmptrab1.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
| elfvmptrab1.v | ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
| Ref | Expression |
|---|---|
| elfvmptrab1 | ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvmptrab1.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) | |
| 2 | 1 | funmpt2 5357 | . . . 4 ⊢ Fun 𝐹 |
| 3 | funrel 5335 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel 𝐹 |
| 5 | relelfvdm 5661 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝑌 ∈ (𝐹‘𝑋)) → 𝑋 ∈ dom 𝐹) | |
| 6 | 4, 5 | mpan 424 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) → 𝑋 ∈ dom 𝐹) |
| 7 | 1 | dmmptss 5225 | . . . . . 6 ⊢ dom 𝐹 ⊆ 𝑉 |
| 8 | 7 | sseli 3220 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉) |
| 9 | elfvmptrab1.v | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) | |
| 10 | rabexg 4227 | . . . . . 6 ⊢ (⦋𝑋 / 𝑚⦌𝑀 ∈ V → {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) | |
| 11 | 8, 9, 10 | 3syl 17 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐹 → {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) |
| 12 | nfcv 2372 | . . . . . 6 ⊢ Ⅎ𝑥𝑋 | |
| 13 | nfsbc1v 3047 | . . . . . . 7 ⊢ Ⅎ𝑥[𝑋 / 𝑥]𝜑 | |
| 14 | nfcv 2372 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑀 | |
| 15 | 12, 14 | nfcsb 3162 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑋 / 𝑚⦌𝑀 |
| 16 | 13, 15 | nfrabw 2712 | . . . . . 6 ⊢ Ⅎ𝑥{𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} |
| 17 | csbeq1 3127 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ⦋𝑥 / 𝑚⦌𝑀 = ⦋𝑋 / 𝑚⦌𝑀) | |
| 18 | sbceq1a 3038 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ [𝑋 / 𝑥]𝜑)) | |
| 19 | 17, 18 | rabeqbidv 2794 | . . . . . 6 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
| 20 | 12, 16, 19, 1 | fvmptf 5729 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) → (𝐹‘𝑋) = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
| 21 | 8, 11, 20 | syl2anc 411 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
| 22 | 21 | eleq2d 2299 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑})) |
| 23 | elrabi 2956 | . . . . 5 ⊢ (𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} → 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀) | |
| 24 | 8, 23 | anim12i 338 | . . . 4 ⊢ ((𝑋 ∈ dom 𝐹 ∧ 𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
| 25 | 24 | ex 115 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
| 26 | 22, 25 | sylbid 150 | . 2 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
| 27 | 6, 26 | mpcom 36 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {crab 2512 Vcvv 2799 [wsbc 3028 ⦋csb 3124 ↦ cmpt 4145 dom cdm 4719 Rel wrel 4724 Fun wfun 5312 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fv 5326 |
| This theorem is referenced by: elfvmptrab 5732 |
| Copyright terms: Public domain | W3C validator |