Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteq2dv | GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
mpteq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
mpteq2dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 274 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | mpteq2dva 4072 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ↦ cmpt 4043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-opab 4044 df-mpt 4045 |
This theorem is referenced by: ofeq 6052 rdgeq1 6339 rdgeq2 6340 omv 6423 oeiv 6424 0tonninf 10374 1tonninf 10375 iseqf1olemjpcl 10430 iseqf1olemqpcl 10431 iseqf1olemfvp 10432 seq3f1olemqsum 10435 seq3f1olemp 10437 summodc 11324 zsumdc 11325 fsum3 11328 prodeq2w 11497 prodmodc 11519 zproddc 11520 fprodseq 11524 1arithlem1 12293 sloteq 12399 cnprcl2k 12846 fsumcncntop 13196 expcncf 13232 dvexp 13315 dvexp2 13316 lgsval 13545 peano4nninf 13886 peano3nninf 13887 nninfalllem1 13888 nninfsellemdc 13890 nninfsellemeq 13894 nninfsellemqall 13895 nninfsellemeqinf 13896 nninfomni 13899 |
Copyright terms: Public domain | W3C validator |