Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteq2dv | GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
mpteq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
mpteq2dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 274 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | mpteq2dva 4079 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ↦ cmpt 4050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-opab 4051 df-mpt 4052 |
This theorem is referenced by: ofeq 6063 rdgeq1 6350 rdgeq2 6351 omv 6434 oeiv 6435 0tonninf 10395 1tonninf 10396 iseqf1olemjpcl 10451 iseqf1olemqpcl 10452 iseqf1olemfvp 10453 seq3f1olemqsum 10456 seq3f1olemp 10458 summodc 11346 zsumdc 11347 fsum3 11350 prodeq2w 11519 prodmodc 11541 zproddc 11542 fprodseq 11546 1arithlem1 12315 sloteq 12421 cnprcl2k 13000 fsumcncntop 13350 expcncf 13386 dvexp 13469 dvexp2 13470 lgsval 13699 peano4nninf 14039 peano3nninf 14040 nninfalllem1 14041 nninfsellemdc 14043 nninfsellemeq 14047 nninfsellemqall 14048 nninfsellemeqinf 14049 nninfomni 14052 |
Copyright terms: Public domain | W3C validator |