| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dv | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| mpteq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | mpteq2dva 4173 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ↦ cmpt 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: ofeqd 6218 ofeq 6219 rdgeq1 6515 rdgeq2 6516 omv 6599 oeiv 6600 0tonninf 10657 1tonninf 10658 iseqf1olemjpcl 10725 iseqf1olemqpcl 10726 iseqf1olemfvp 10727 seq3f1olemqsum 10730 seq3f1olemp 10732 summodc 11889 zsumdc 11890 fsum3 11893 prodeq2w 12062 prodmodc 12084 zproddc 12085 fprodseq 12089 nninfctlemfo 12556 1arithlem1 12881 sloteq 13032 prdsplusgval 13311 prdsmulrval 13313 qusex 13353 grplactfval 13629 cnprcl2k 14874 fsumcncntop 15235 expcn 15237 expcncf 15277 dvexp 15379 dvexp2 15380 dvmptfsum 15393 elply2 15403 elplyr 15408 elplyd 15409 plycolemc 15426 dvply2g 15434 lgsval 15677 incistruhgr 15884 peano4nninf 16331 peano3nninf 16332 nninfalllem1 16333 nninfsellemdc 16335 nninfsellemeq 16339 nninfsellemqall 16340 nninfsellemeqinf 16341 nninfomni 16344 nnnninfex 16347 |
| Copyright terms: Public domain | W3C validator |