Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteq2dv | GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
mpteq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
mpteq2dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | mpteq2dva 4088 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ↦ cmpt 4059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-ral 2458 df-opab 4060 df-mpt 4061 |
This theorem is referenced by: ofeq 6075 rdgeq1 6362 rdgeq2 6363 omv 6446 oeiv 6447 0tonninf 10407 1tonninf 10408 iseqf1olemjpcl 10463 iseqf1olemqpcl 10464 iseqf1olemfvp 10465 seq3f1olemqsum 10468 seq3f1olemp 10470 summodc 11357 zsumdc 11358 fsum3 11361 prodeq2w 11530 prodmodc 11552 zproddc 11553 fprodseq 11557 1arithlem1 12326 sloteq 12432 grplactfval 12830 cnprcl2k 13275 fsumcncntop 13625 expcncf 13661 dvexp 13744 dvexp2 13745 lgsval 13974 peano4nninf 14314 peano3nninf 14315 nninfalllem1 14316 nninfsellemdc 14318 nninfsellemeq 14322 nninfsellemqall 14323 nninfsellemeqinf 14324 nninfomni 14327 |
Copyright terms: Public domain | W3C validator |