ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2dv GIF version

Theorem mpteq2dv 4080
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
mpteq2dv.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
mpteq2dv (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem mpteq2dv
StepHypRef Expression
1 mpteq2dv.1 . . 3 (𝜑𝐵 = 𝐶)
21adantr 274 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
32mpteq2dva 4079 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  cmpt 4050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-opab 4051  df-mpt 4052
This theorem is referenced by:  ofeq  6063  rdgeq1  6350  rdgeq2  6351  omv  6434  oeiv  6435  0tonninf  10395  1tonninf  10396  iseqf1olemjpcl  10451  iseqf1olemqpcl  10452  iseqf1olemfvp  10453  seq3f1olemqsum  10456  seq3f1olemp  10458  summodc  11346  zsumdc  11347  fsum3  11350  prodeq2w  11519  prodmodc  11541  zproddc  11542  fprodseq  11546  1arithlem1  12315  sloteq  12421  cnprcl2k  13000  fsumcncntop  13350  expcncf  13386  dvexp  13469  dvexp2  13470  lgsval  13699  peano4nninf  14039  peano3nninf  14040  nninfalllem1  14041  nninfsellemdc  14043  nninfsellemeq  14047  nninfsellemqall  14048  nninfsellemeqinf  14049  nninfomni  14052
  Copyright terms: Public domain W3C validator