| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dv | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| mpteq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | mpteq2dva 4124 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ↦ cmpt 4095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: ofeqd 6141 ofeq 6142 rdgeq1 6438 rdgeq2 6439 omv 6522 oeiv 6523 0tonninf 10551 1tonninf 10552 iseqf1olemjpcl 10619 iseqf1olemqpcl 10620 iseqf1olemfvp 10621 seq3f1olemqsum 10624 seq3f1olemp 10626 summodc 11567 zsumdc 11568 fsum3 11571 prodeq2w 11740 prodmodc 11762 zproddc 11763 fprodseq 11767 nninfctlemfo 12234 1arithlem1 12559 sloteq 12710 prdsplusgval 12987 prdsmulrval 12989 qusex 13029 grplactfval 13305 cnprcl2k 14550 fsumcncntop 14911 expcn 14913 expcncf 14953 dvexp 15055 dvexp2 15056 dvmptfsum 15069 elply2 15079 elplyr 15084 elplyd 15085 plycolemc 15102 dvply2g 15110 lgsval 15353 peano4nninf 15761 peano3nninf 15762 nninfalllem1 15763 nninfsellemdc 15765 nninfsellemeq 15769 nninfsellemqall 15770 nninfsellemeqinf 15771 nninfomni 15774 nnnninfex 15777 |
| Copyright terms: Public domain | W3C validator |