| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dv | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| mpteq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | mpteq2dva 4141 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ↦ cmpt 4112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-ral 2490 df-opab 4113 df-mpt 4114 |
| This theorem is referenced by: ofeqd 6172 ofeq 6173 rdgeq1 6469 rdgeq2 6470 omv 6553 oeiv 6554 0tonninf 10602 1tonninf 10603 iseqf1olemjpcl 10670 iseqf1olemqpcl 10671 iseqf1olemfvp 10672 seq3f1olemqsum 10675 seq3f1olemp 10677 summodc 11764 zsumdc 11765 fsum3 11768 prodeq2w 11937 prodmodc 11959 zproddc 11960 fprodseq 11964 nninfctlemfo 12431 1arithlem1 12756 sloteq 12907 prdsplusgval 13185 prdsmulrval 13187 qusex 13227 grplactfval 13503 cnprcl2k 14748 fsumcncntop 15109 expcn 15111 expcncf 15151 dvexp 15253 dvexp2 15254 dvmptfsum 15267 elply2 15277 elplyr 15282 elplyd 15283 plycolemc 15300 dvply2g 15308 lgsval 15551 incistruhgr 15756 peano4nninf 16078 peano3nninf 16079 nninfalllem1 16080 nninfsellemdc 16082 nninfsellemeq 16086 nninfsellemqall 16087 nninfsellemeqinf 16088 nninfomni 16091 nnnninfex 16094 |
| Copyright terms: Public domain | W3C validator |