| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqd | GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| oveqd | ⊢ (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | oveq 5950 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 (class class class)co 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: oveq123d 5965 oveqdr 5972 csbov12g 5984 ovmpodxf 6071 oprssov 6088 ofeqd 6160 ofeq 6161 fnmpoovd 6301 seqeq2 10596 prdsex 13101 prdsval 13105 pwsplusgval 13127 pwsmulrval 13128 imasex 13137 imasival 13138 plusffvalg 13194 mgm1 13202 grpidvalg 13205 grpidd 13215 gsumress 13227 sgrp1 13243 issgrpd 13244 ismndd 13269 issubmnd 13274 mnd1 13287 ismhm 13293 mhmex 13294 issubm 13304 resmhm 13319 resmhm2 13320 resmhm2b 13321 isgrp 13338 isgrpd2e 13352 grpidd2 13373 grpinvfvalg 13374 grp1 13438 imasgrp2 13446 imasgrp 13447 subg0 13516 subginv 13517 subgcl 13520 issubgrpd2 13526 isnsg 13538 nmznsg 13549 isghm 13579 resghm 13596 iscmn 13629 iscmnd 13634 imasabl 13672 rngass 13701 rngcl 13706 rngpropd 13717 dfur2g 13724 issrg 13727 srgcl 13732 srgass 13733 srgideu 13734 issrgid 13743 srgpcomp 13752 srgpcompp 13753 isring 13762 ringcl 13775 crngcom 13776 iscrng2 13777 ringass 13778 ringideu 13779 isringid 13787 ringidss 13791 ringpropd 13800 ring1 13821 opprmulg 13833 oppr0g 13843 oppr1g 13844 opprnegg 13845 mulgass3 13847 reldvdsrsrg 13854 dvdsrvald 13855 dvdsrd 13856 opprunitd 13872 dvrvald 13896 rdivmuldivd 13906 rhmmul 13926 isrhm2d 13927 rhmopp 13938 rhmunitinv 13940 islring 13954 lringuplu 13958 subrngmcl 13971 subrg1 13993 subrgmcl 13995 subrgdvds 13997 subrguss 13998 subrginv 13999 subrgdv 14000 subrgunit 14001 subrgugrp 14002 issubrg3 14009 rhmpropd 14016 rrgval 14024 aprval 14044 aprap 14048 islmod 14053 islmodd 14055 scaffvalg 14068 lmodpropd 14111 lsssetm 14118 islssmd 14121 islidlm 14241 lidlacl 14246 rnglidlmmgm 14258 rnglidlmsgrp 14259 rnglidlrng 14260 rspsn 14296 psrval 14428 psradd 14441 mpladd 14466 blfvalps 14857 lgseisenlem3 15549 lgseisenlem4 15550 |
| Copyright terms: Public domain | W3C validator |