| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqd | GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| oveqd | ⊢ (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | oveq 5931 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 (class class class)co 5925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: oveq123d 5946 oveqdr 5953 csbov12g 5965 ovmpodxf 6052 oprssov 6069 ofeqd 6141 ofeq 6142 fnmpoovd 6282 seqeq2 10562 prdsex 12973 prdsval 12977 pwsplusgval 12999 pwsmulrval 13000 imasex 13009 imasival 13010 plusffvalg 13066 mgm1 13074 grpidvalg 13077 grpidd 13087 gsumress 13099 sgrp1 13115 issgrpd 13116 ismndd 13141 issubmnd 13146 mnd1 13159 ismhm 13165 mhmex 13166 issubm 13176 resmhm 13191 resmhm2 13192 resmhm2b 13193 isgrp 13210 isgrpd2e 13224 grpidd2 13245 grpinvfvalg 13246 grp1 13310 imasgrp2 13318 imasgrp 13319 subg0 13388 subginv 13389 subgcl 13392 issubgrpd2 13398 isnsg 13410 nmznsg 13421 isghm 13451 resghm 13468 iscmn 13501 iscmnd 13506 imasabl 13544 rngass 13573 rngcl 13578 rngpropd 13589 dfur2g 13596 issrg 13599 srgcl 13604 srgass 13605 srgideu 13606 issrgid 13615 srgpcomp 13624 srgpcompp 13625 isring 13634 ringcl 13647 crngcom 13648 iscrng2 13649 ringass 13650 ringideu 13651 isringid 13659 ringidss 13663 ringpropd 13672 ring1 13693 opprmulg 13705 oppr0g 13715 oppr1g 13716 opprnegg 13717 mulgass3 13719 reldvdsrsrg 13726 dvdsrvald 13727 dvdsrd 13728 opprunitd 13744 dvrvald 13768 rdivmuldivd 13778 rhmmul 13798 isrhm2d 13799 rhmopp 13810 rhmunitinv 13812 islring 13826 lringuplu 13830 subrngmcl 13843 subrg1 13865 subrgmcl 13867 subrgdvds 13869 subrguss 13870 subrginv 13871 subrgdv 13872 subrgunit 13873 subrgugrp 13874 issubrg3 13881 rhmpropd 13888 rrgval 13896 aprval 13916 aprap 13920 islmod 13925 islmodd 13927 scaffvalg 13940 lmodpropd 13983 lsssetm 13990 islssmd 13993 islidlm 14113 lidlacl 14118 rnglidlmmgm 14130 rnglidlmsgrp 14131 rnglidlrng 14132 rspsn 14168 psrval 14300 psradd 14313 mpladd 14338 blfvalps 14729 lgseisenlem3 15421 lgseisenlem4 15422 |
| Copyright terms: Public domain | W3C validator |