![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveqd | GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
oveqd | ⊢ (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | oveq 5924 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 (class class class)co 5918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: oveq123d 5939 oveqdr 5946 csbov12g 5957 ovmpodxf 6044 oprssov 6060 ofeqd 6132 ofeq 6133 fnmpoovd 6268 seqeq2 10522 prdsex 12880 imasex 12888 imasival 12889 plusffvalg 12945 mgm1 12953 grpidvalg 12956 grpidd 12966 gsumress 12978 sgrp1 12994 issgrpd 12995 ismndd 13018 issubmnd 13023 mnd1 13027 ismhm 13033 mhmex 13034 issubm 13044 resmhm 13059 resmhm2 13060 resmhm2b 13061 isgrp 13078 isgrpd2e 13092 grpidd2 13113 grpinvfvalg 13114 grp1 13178 imasgrp2 13180 imasgrp 13181 subg0 13250 subginv 13251 subgcl 13254 issubgrpd2 13260 isnsg 13272 nmznsg 13283 isghm 13313 resghm 13330 iscmn 13363 iscmnd 13368 imasabl 13406 rngass 13435 rngcl 13440 rngpropd 13451 dfur2g 13458 issrg 13461 srgcl 13466 srgass 13467 srgideu 13468 issrgid 13477 srgpcomp 13486 srgpcompp 13487 isring 13496 ringcl 13509 crngcom 13510 iscrng2 13511 ringass 13512 ringideu 13513 isringid 13521 ringidss 13525 ringpropd 13534 ring1 13555 opprmulg 13567 oppr0g 13577 oppr1g 13578 opprnegg 13579 mulgass3 13581 reldvdsrsrg 13588 dvdsrvald 13589 dvdsrd 13590 opprunitd 13606 dvrvald 13630 rdivmuldivd 13640 rhmmul 13660 isrhm2d 13661 rhmopp 13672 rhmunitinv 13674 islring 13688 lringuplu 13692 subrngmcl 13705 subrg1 13727 subrgmcl 13729 subrgdvds 13731 subrguss 13732 subrginv 13733 subrgdv 13734 subrgunit 13735 subrgugrp 13736 issubrg3 13743 rhmpropd 13750 rrgval 13758 aprval 13778 aprap 13782 islmod 13787 islmodd 13789 scaffvalg 13802 lmodpropd 13845 lsssetm 13852 islssmd 13855 islidlm 13975 lidlacl 13980 rnglidlmmgm 13992 rnglidlmsgrp 13993 rnglidlrng 13994 rspsn 14030 psrval 14152 psradd 14163 blfvalps 14553 lgseisenlem3 15188 lgseisenlem4 15189 |
Copyright terms: Public domain | W3C validator |