ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveqd GIF version

Theorem oveqd 5859
Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.)
Hypothesis
Ref Expression
oveq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
oveqd (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷))

Proof of Theorem oveqd
StepHypRef Expression
1 oveq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 oveq 5848 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷))
31, 2syl 14 1 (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  oveq123d  5863  oveqdr  5870  csbov12g  5881  ovmpodxf  5967  oprssov  5983  ofeq  6052  fnmpoovd  6183  seqeq2  10384  plusffvalg  12593  mgm1  12601  grpidvalg  12604  grpidd  12614  blfvalps  13025
  Copyright terms: Public domain W3C validator