| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordpwsucss | GIF version | ||
| Description: The collection of
ordinals in the power class of an ordinal is a
superset of its successor.
We can think of (𝒫 𝐴 ∩ On) as another possible definition of successor, which would be equivalent to df-suc 4461 given excluded middle. It is an ordinal, and has some successor-like properties. For example, if 𝐴 ∈ On then both ∪ suc 𝐴 = 𝐴 (onunisuci 4522) and ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴 (onuniss2 4603). Constructively (𝒫 𝐴 ∩ On) and suc 𝐴 cannot be shown to be equivalent (as proved at ordpwsucexmid 4661). (Contributed by Jim Kingdon, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| ordpwsucss | ⊢ (Ord 𝐴 → suc 𝐴 ⊆ (𝒫 𝐴 ∩ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 4654 | . . . . 5 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 2 | ordelon 4473 | . . . . . 6 ⊢ ((Ord suc 𝐴 ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ On) | |
| 3 | 2 | ex 115 | . . . . 5 ⊢ (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
| 4 | 1, 3 | sylbi 121 | . . . 4 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
| 5 | ordtr 4468 | . . . . 5 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 6 | trsucss 4513 | . . . . 5 ⊢ (Tr 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 7 | 5, 6 | syl 14 | . . . 4 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴)) |
| 8 | 4, 7 | jcad 307 | . . 3 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴))) |
| 9 | elin 3387 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On)) | |
| 10 | velpw 3656 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 11 | 10 | anbi2ci 459 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
| 12 | 9, 11 | bitri 184 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
| 13 | 8, 12 | imbitrrdi 162 | . 2 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ (𝒫 𝐴 ∩ On))) |
| 14 | 13 | ssrdv 3230 | 1 ⊢ (Ord 𝐴 → suc 𝐴 ⊆ (𝒫 𝐴 ∩ On)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∩ cin 3196 ⊆ wss 3197 𝒫 cpw 3649 Tr wtr 4181 Ord word 4452 Oncon0 4453 suc csuc 4455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |