Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordpwsucss | GIF version |
Description: The collection of
ordinals in the power class of an ordinal is a
superset of its successor.
We can think of (𝒫 𝐴 ∩ On) as another possible definition of successor, which would be equivalent to df-suc 4356 given excluded middle. It is an ordinal, and has some successor-like properties. For example, if 𝐴 ∈ On then both ∪ suc 𝐴 = 𝐴 (onunisuci 4417) and ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴 (onuniss2 4496). Constructively (𝒫 𝐴 ∩ On) and suc 𝐴 cannot be shown to be equivalent (as proved at ordpwsucexmid 4554). (Contributed by Jim Kingdon, 21-Jul-2019.) |
Ref | Expression |
---|---|
ordpwsucss | ⊢ (Ord 𝐴 → suc 𝐴 ⊆ (𝒫 𝐴 ∩ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 4547 | . . . . 5 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
2 | ordelon 4368 | . . . . . 6 ⊢ ((Ord suc 𝐴 ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ On) | |
3 | 2 | ex 114 | . . . . 5 ⊢ (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
4 | 1, 3 | sylbi 120 | . . . 4 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
5 | ordtr 4363 | . . . . 5 ⊢ (Ord 𝐴 → Tr 𝐴) | |
6 | trsucss 4408 | . . . . 5 ⊢ (Tr 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴)) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴)) |
8 | 4, 7 | jcad 305 | . . 3 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴))) |
9 | elin 3310 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On)) | |
10 | velpw 3573 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
11 | 10 | anbi2ci 456 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
12 | 9, 11 | bitri 183 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
13 | 8, 12 | syl6ibr 161 | . 2 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ (𝒫 𝐴 ∩ On))) |
14 | 13 | ssrdv 3153 | 1 ⊢ (Ord 𝐴 → suc 𝐴 ⊆ (𝒫 𝐴 ∩ On)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ∩ cin 3120 ⊆ wss 3121 𝒫 cpw 3566 Tr wtr 4087 Ord word 4347 Oncon0 4348 suc csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |