![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordpwsucss | GIF version |
Description: The collection of
ordinals in the power class of an ordinal is a
superset of its successor.
We can think of (𝒫 𝐴 ∩ On) as another possible definition of successor, which would be equivalent to df-suc 4402 given excluded middle. It is an ordinal, and has some successor-like properties. For example, if 𝐴 ∈ On then both ∪ suc 𝐴 = 𝐴 (onunisuci 4463) and ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴 (onuniss2 4544). Constructively (𝒫 𝐴 ∩ On) and suc 𝐴 cannot be shown to be equivalent (as proved at ordpwsucexmid 4602). (Contributed by Jim Kingdon, 21-Jul-2019.) |
Ref | Expression |
---|---|
ordpwsucss | ⊢ (Ord 𝐴 → suc 𝐴 ⊆ (𝒫 𝐴 ∩ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 4595 | . . . . 5 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
2 | ordelon 4414 | . . . . . 6 ⊢ ((Ord suc 𝐴 ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ On) | |
3 | 2 | ex 115 | . . . . 5 ⊢ (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
4 | 1, 3 | sylbi 121 | . . . 4 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ On)) |
5 | ordtr 4409 | . . . . 5 ⊢ (Ord 𝐴 → Tr 𝐴) | |
6 | trsucss 4454 | . . . . 5 ⊢ (Tr 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴)) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴)) |
8 | 4, 7 | jcad 307 | . . 3 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴))) |
9 | elin 3342 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On)) | |
10 | velpw 3608 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
11 | 10 | anbi2ci 459 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
12 | 9, 11 | bitri 184 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)) |
13 | 8, 12 | imbitrrdi 162 | . 2 ⊢ (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → 𝑥 ∈ (𝒫 𝐴 ∩ On))) |
14 | 13 | ssrdv 3185 | 1 ⊢ (Ord 𝐴 → suc 𝐴 ⊆ (𝒫 𝐴 ∩ On)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∩ cin 3152 ⊆ wss 3153 𝒫 cpw 3601 Tr wtr 4127 Ord word 4393 Oncon0 4394 suc csuc 4396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |