ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnotovb GIF version

Theorem fnotovb 5896
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5538. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnotovb ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))

Proof of Theorem fnotovb
StepHypRef Expression
1 opelxpi 4643 . . . 4 ((𝐶𝐴𝐷𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵))
2 fnopfvb 5538 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → ((𝐹‘⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹))
31, 2sylan2 284 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → ((𝐹‘⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹))
433impb 1194 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐹‘⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹))
5 df-ov 5856 . . 3 (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩)
65eqeq1i 2178 . 2 ((𝐶𝐹𝐷) = 𝑅 ↔ (𝐹‘⟨𝐶, 𝐷⟩) = 𝑅)
7 df-ot 3593 . . 3 𝐶, 𝐷, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑅
87eleq1i 2236 . 2 (⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹)
94, 6, 83bitr4g 222 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  cop 3586  cotp 3587   × cxp 4609   Fn wfn 5193  cfv 5198  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-ot 3593  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator