ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnotovb GIF version

Theorem fnotovb 5642
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5302. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnotovb ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))

Proof of Theorem fnotovb
StepHypRef Expression
1 opelxpi 4440 . . . 4 ((𝐶𝐴𝐷𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵))
2 fnopfvb 5302 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → ((𝐹‘⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹))
31, 2sylan2 280 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → ((𝐹‘⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹))
433impb 1137 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐹‘⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹))
5 df-ov 5609 . . 3 (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩)
65eqeq1i 2092 . 2 ((𝐶𝐹𝐷) = 𝑅 ↔ (𝐹‘⟨𝐶, 𝐷⟩) = 𝑅)
7 df-ot 3440 . . 3 𝐶, 𝐷, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑅
87eleq1i 2150 . 2 (⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹)
94, 6, 83bitr4g 221 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wcel 1436  cop 3433  cotp 3434   × cxp 4407   Fn wfn 4972  cfv 4977  (class class class)co 5606
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3930  ax-pow 3982  ax-pr 4008
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-sbc 2830  df-un 2992  df-in 2994  df-ss 3001  df-pw 3416  df-sn 3436  df-pr 3437  df-op 3439  df-ot 3440  df-uni 3636  df-br 3820  df-opab 3874  df-id 4092  df-xp 4415  df-rel 4416  df-cnv 4417  df-co 4418  df-dm 4419  df-iota 4942  df-fun 4979  df-fn 4980  df-fv 4985  df-ov 5609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator