Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnotovb | GIF version |
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5536. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fnotovb | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4641 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) | |
2 | fnopfvb 5536 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → ((𝐹‘〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) | |
3 | 1, 2 | sylan2 284 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → ((𝐹‘〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
4 | 3 | 3impb 1194 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
5 | df-ov 5853 | . . 3 ⊢ (𝐶𝐹𝐷) = (𝐹‘〈𝐶, 𝐷〉) | |
6 | 5 | eqeq1i 2178 | . 2 ⊢ ((𝐶𝐹𝐷) = 𝑅 ↔ (𝐹‘〈𝐶, 𝐷〉) = 𝑅) |
7 | df-ot 3591 | . . 3 ⊢ 〈𝐶, 𝐷, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑅〉 | |
8 | 7 | eleq1i 2236 | . 2 ⊢ (〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹) |
9 | 4, 6, 8 | 3bitr4g 222 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 〈cop 3584 〈cotp 3585 × cxp 4607 Fn wfn 5191 ‘cfv 5196 (class class class)co 5850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-ot 3591 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fn 5199 df-fv 5204 df-ov 5853 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |