| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnotovb | GIF version | ||
| Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5633. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fnotovb | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4715 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) | |
| 2 | fnopfvb 5633 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → ((𝐹‘〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) | |
| 3 | 1, 2 | sylan2 286 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → ((𝐹‘〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
| 4 | 3 | 3impb 1202 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
| 5 | df-ov 5960 | . . 3 ⊢ (𝐶𝐹𝐷) = (𝐹‘〈𝐶, 𝐷〉) | |
| 6 | 5 | eqeq1i 2214 | . 2 ⊢ ((𝐶𝐹𝐷) = 𝑅 ↔ (𝐹‘〈𝐶, 𝐷〉) = 𝑅) |
| 7 | df-ot 3648 | . . 3 ⊢ 〈𝐶, 𝐷, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑅〉 | |
| 8 | 7 | eleq1i 2272 | . 2 ⊢ (〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹) |
| 9 | 4, 6, 8 | 3bitr4g 223 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 〈cop 3641 〈cotp 3642 × cxp 4681 Fn wfn 5275 ‘cfv 5280 (class class class)co 5957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-ot 3648 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-ov 5960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |