| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsr | GIF version | ||
| Description: A Cauchy sequence of
signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within 1 / 𝑛 of the nth term
(it should later be able to prove versions of this theorem with a
different fixed rate or a modulus of convergence supplied as a
hypothesis).
This is similar to caucvgprpr 7907 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7996). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7992). 3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7907 to get a limit (see caucvgsrlemgt1 7990). 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7990). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7995). (Contributed by Jim Kingdon, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| Ref | Expression |
|---|---|
| caucvgsr | ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsr.f | . 2 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 2 | caucvgsr.cau | . 2 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
| 3 | breq1 4086 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 1o → (𝑛 <N 𝑘 ↔ 1o <N 𝑘)) | |
| 4 | fveq2 5629 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → (𝐹‘𝑛) = (𝐹‘1o)) | |
| 5 | opeq1 3857 | . . . . . . . . . . . . . . . . . . . . . . . 24 ⊢ (𝑛 = 1o → 〈𝑛, 1o〉 = 〈1o, 1o〉) | |
| 6 | 5 | eceq1d 6724 | . . . . . . . . . . . . . . . . . . . . . . 23 ⊢ (𝑛 = 1o → [〈𝑛, 1o〉] ~Q = [〈1o, 1o〉] ~Q ) |
| 7 | 6 | fveq2d 5633 | . . . . . . . . . . . . . . . . . . . . . 22 ⊢ (𝑛 = 1o → (*Q‘[〈𝑛, 1o〉] ~Q ) = (*Q‘[〈1o, 1o〉] ~Q )) |
| 8 | 7 | breq2d 4095 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝑛 = 1o → (𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q ) ↔ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q ))) |
| 9 | 8 | abbidv 2347 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝑛 = 1o → {𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )} = {𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}) |
| 10 | 7 | breq1d 4093 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝑛 = 1o → ((*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢 ↔ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢)) |
| 11 | 10 | abbidv 2347 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝑛 = 1o → {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}) |
| 12 | 9, 11 | opeq12d 3865 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝑛 = 1o → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉) |
| 13 | 12 | oveq1d 6022 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑛 = 1o → (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P) = (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P)) |
| 14 | 13 | opeq1d 3863 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑛 = 1o → 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉) |
| 15 | 14 | eceq1d 6724 | . . . . . . . . . . . . . . . 16 ⊢ (𝑛 = 1o → [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) |
| 16 | 15 | oveq2d 6023 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) |
| 17 | 4, 16 | breq12d 4096 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = 1o → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 18 | 4, 15 | oveq12d 6025 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) |
| 19 | 18 | breq2d 4095 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = 1o → ((𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 20 | 17, 19 | anbi12d 473 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 1o → (((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) ↔ ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 21 | 3, 20 | imbi12d 234 | . . . . . . . . . . . 12 ⊢ (𝑛 = 1o → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) ↔ (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))))) |
| 22 | 21 | ralbidv 2530 | . . . . . . . . . . 11 ⊢ (𝑛 = 1o → (∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) ↔ ∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))))) |
| 23 | 1pi 7510 | . . . . . . . . . . . 12 ⊢ 1o ∈ N | |
| 24 | 23 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝜑 → 1o ∈ N) |
| 25 | 22, 2, 24 | rspcdva 2912 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 26 | simpl 109 | . . . . . . . . . . . 12 ⊢ (((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) | |
| 27 | 26 | imim2i 12 | . . . . . . . . . . 11 ⊢ ((1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) → (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 28 | 27 | ralimi 2593 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) → ∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 29 | 25, 28 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 30 | breq2 4087 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (1o <N 𝑘 ↔ 1o <N 𝑚)) | |
| 31 | fveq2 5629 | . . . . . . . . . . . . 13 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
| 32 | 31 | oveq1d 6022 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) |
| 33 | 32 | breq2d 4095 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 34 | 30, 33 | imbi12d 234 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑚 → ((1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) ↔ (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 35 | 34 | rspcv 2903 | . . . . . . . . 9 ⊢ (𝑚 ∈ N → (∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 36 | 29, 35 | mpan9 281 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 37 | df-1nqqs 7546 | . . . . . . . . . . . . . . . . . . . 20 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 38 | 37 | fveq2i 5632 | . . . . . . . . . . . . . . . . . . 19 ⊢ (*Q‘1Q) = (*Q‘[〈1o, 1o〉] ~Q ) |
| 39 | rec1nq 7590 | . . . . . . . . . . . . . . . . . . 19 ⊢ (*Q‘1Q) = 1Q | |
| 40 | 38, 39 | eqtr3i 2252 | . . . . . . . . . . . . . . . . . 18 ⊢ (*Q‘[〈1o, 1o〉] ~Q ) = 1Q |
| 41 | 40 | breq2i 4091 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q ) ↔ 𝑙 <Q 1Q) |
| 42 | 41 | abbii 2345 | . . . . . . . . . . . . . . . 16 ⊢ {𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )} = {𝑙 ∣ 𝑙 <Q 1Q} |
| 43 | 40 | breq1i 4090 | . . . . . . . . . . . . . . . . 17 ⊢ ((*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢 ↔ 1Q <Q 𝑢) |
| 44 | 43 | abbii 2345 | . . . . . . . . . . . . . . . 16 ⊢ {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢} |
| 45 | 42, 44 | opeq12i 3862 | . . . . . . . . . . . . . . 15 ⊢ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 |
| 46 | df-i1p 7662 | . . . . . . . . . . . . . . 15 ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | |
| 47 | 45, 46 | eqtr4i 2253 | . . . . . . . . . . . . . 14 ⊢ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 = 1P |
| 48 | 47 | oveq1i 6017 | . . . . . . . . . . . . 13 ⊢ (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P) = (1P +P 1P) |
| 49 | 48 | opeq1i 3860 | . . . . . . . . . . . 12 ⊢ 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(1P +P 1P), 1P〉 |
| 50 | eceq1 6723 | . . . . . . . . . . . 12 ⊢ (〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(1P +P 1P), 1P〉 → [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(1P +P 1P), 1P〉] ~R ) | |
| 51 | 49, 50 | ax-mp 5 | . . . . . . . . . . 11 ⊢ [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(1P +P 1P), 1P〉] ~R |
| 52 | df-1r 7927 | . . . . . . . . . . 11 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 53 | 51, 52 | eqtr4i 2253 | . . . . . . . . . 10 ⊢ [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = 1R |
| 54 | 53 | oveq2i 6018 | . . . . . . . . 9 ⊢ ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑚) +R 1R) |
| 55 | 54 | breq2i 4091 | . . . . . . . 8 ⊢ ((𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 56 | 36, 55 | imbitrdi 161 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R))) |
| 57 | 56 | imp 124 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o <N 𝑚) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 58 | 1 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 𝐹:N⟶R) |
| 59 | 23 | a1i 9 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1o ∈ N) |
| 60 | 58, 59 | ffvelcdmd 5773 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) ∈ R) |
| 61 | ltadd1sr 7971 | . . . . . . . . 9 ⊢ ((𝐹‘1o) ∈ R → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) | |
| 62 | 60, 61 | syl 14 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) |
| 63 | 62 | adantr 276 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) |
| 64 | fveq2 5629 | . . . . . . . . 9 ⊢ (1o = 𝑚 → (𝐹‘1o) = (𝐹‘𝑚)) | |
| 65 | 64 | oveq1d 6022 | . . . . . . . 8 ⊢ (1o = 𝑚 → ((𝐹‘1o) +R 1R) = ((𝐹‘𝑚) +R 1R)) |
| 66 | 65 | adantl 277 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → ((𝐹‘1o) +R 1R) = ((𝐹‘𝑚) +R 1R)) |
| 67 | 63, 66 | breqtrd 4109 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 68 | nlt1pig 7536 | . . . . . . . . 9 ⊢ (𝑚 ∈ N → ¬ 𝑚 <N 1o) | |
| 69 | 68 | adantl 277 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ¬ 𝑚 <N 1o) |
| 70 | 69 | pm2.21d 622 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝑚 <N 1o → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R))) |
| 71 | 70 | imp 124 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 𝑚 <N 1o) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 72 | pitri3or 7517 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 𝑚 ∈ N) → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) | |
| 73 | 23, 72 | mpan 424 | . . . . . . 7 ⊢ (𝑚 ∈ N → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) |
| 74 | 73 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) |
| 75 | 57, 67, 71, 74 | mpjao3dan 1341 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 76 | ltasrg 7965 | . . . . . . 7 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) | |
| 77 | 76 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R)) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) |
| 78 | 1 | ffvelcdmda 5772 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘𝑚) ∈ R) |
| 79 | 1sr 7946 | . . . . . . 7 ⊢ 1R ∈ R | |
| 80 | addclsr 7948 | . . . . . . 7 ⊢ (((𝐹‘𝑚) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝑚) +R 1R) ∈ R) | |
| 81 | 78, 79, 80 | sylancl 413 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R 1R) ∈ R) |
| 82 | m1r 7947 | . . . . . . 7 ⊢ -1R ∈ R | |
| 83 | 82 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → -1R ∈ R) |
| 84 | addcomsrg 7950 | . . . . . . 7 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) | |
| 85 | 84 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) |
| 86 | 77, 60, 81, 83, 85 | caovord2d 6181 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) <R ((𝐹‘𝑚) +R 1R) ↔ ((𝐹‘1o) +R -1R) <R (((𝐹‘𝑚) +R 1R) +R -1R))) |
| 87 | 75, 86 | mpbid 147 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) +R -1R) <R (((𝐹‘𝑚) +R 1R) +R -1R)) |
| 88 | 79 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1R ∈ R) |
| 89 | addasssrg 7951 | . . . . . 6 ⊢ (((𝐹‘𝑚) ∈ R ∧ 1R ∈ R ∧ -1R ∈ R) → (((𝐹‘𝑚) +R 1R) +R -1R) = ((𝐹‘𝑚) +R (1R +R -1R))) | |
| 90 | 78, 88, 83, 89 | syl3anc 1271 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (((𝐹‘𝑚) +R 1R) +R -1R) = ((𝐹‘𝑚) +R (1R +R -1R))) |
| 91 | addcomsrg 7950 | . . . . . . . . 9 ⊢ ((1R ∈ R ∧ -1R ∈ R) → (1R +R -1R) = (-1R +R 1R)) | |
| 92 | 79, 82, 91 | mp2an 426 | . . . . . . . 8 ⊢ (1R +R -1R) = (-1R +R 1R) |
| 93 | m1p1sr 7955 | . . . . . . . 8 ⊢ (-1R +R 1R) = 0R | |
| 94 | 92, 93 | eqtri 2250 | . . . . . . 7 ⊢ (1R +R -1R) = 0R |
| 95 | 94 | oveq2i 6018 | . . . . . 6 ⊢ ((𝐹‘𝑚) +R (1R +R -1R)) = ((𝐹‘𝑚) +R 0R) |
| 96 | 0idsr 7962 | . . . . . . 7 ⊢ ((𝐹‘𝑚) ∈ R → ((𝐹‘𝑚) +R 0R) = (𝐹‘𝑚)) | |
| 97 | 78, 96 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R 0R) = (𝐹‘𝑚)) |
| 98 | 95, 97 | eqtrid 2274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R (1R +R -1R)) = (𝐹‘𝑚)) |
| 99 | 90, 98 | eqtrd 2262 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (((𝐹‘𝑚) +R 1R) +R -1R) = (𝐹‘𝑚)) |
| 100 | 87, 99 | breqtrd 4109 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) +R -1R) <R (𝐹‘𝑚)) |
| 101 | 100 | ralrimiva 2603 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N ((𝐹‘1o) +R -1R) <R (𝐹‘𝑚)) |
| 102 | 1, 2, 101 | caucvgsrlembnd 7996 | 1 ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 1001 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 〈cop 3669 class class class wbr 4083 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 1oc1o 6561 [cec 6686 Ncnpi 7467 <N clti 7470 ~Q ceq 7474 1Qc1q 7476 *Qcrq 7479 <Q cltq 7480 1Pc1p 7487 +P cpp 7488 ~R cer 7491 Rcnr 7492 0Rc0r 7493 1Rc1r 7494 -1Rcm1r 7495 +R cplr 7496 <R cltr 7498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-2o 6569 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-pli 7500 df-mi 7501 df-lti 7502 df-plpq 7539 df-mpq 7540 df-enq 7542 df-nqqs 7543 df-plqqs 7544 df-mqqs 7545 df-1nqqs 7546 df-rq 7547 df-ltnqqs 7548 df-enq0 7619 df-nq0 7620 df-0nq0 7621 df-plq0 7622 df-mq0 7623 df-inp 7661 df-i1p 7662 df-iplp 7663 df-imp 7664 df-iltp 7665 df-enr 7921 df-nr 7922 df-plr 7923 df-mr 7924 df-ltr 7925 df-0r 7926 df-1r 7927 df-m1r 7928 |
| This theorem is referenced by: axcaucvglemres 8094 |
| Copyright terms: Public domain | W3C validator |