![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsr | GIF version |
Description: A Cauchy sequence of
signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within 1 / 𝑛 of the nth term
(it should later be able to prove versions of this theorem with a
different fixed rate or a modulus of convergence supplied as a
hypothesis).
This is similar to caucvgprpr 7711 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7800). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7796). 3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7711 to get a limit (see caucvgsrlemgt1 7794). 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7794). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7799). (Contributed by Jim Kingdon, 20-Jun-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))) |
Ref | Expression |
---|---|
caucvgsr | ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsr.f | . 2 ⊢ (𝜑 → 𝐹:N⟶R) | |
2 | caucvgsr.cau | . 2 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))) | |
3 | breq1 4007 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 1o → (𝑛 <N 𝑘 ↔ 1o <N 𝑘)) | |
4 | fveq2 5516 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → (𝐹‘𝑛) = (𝐹‘1o)) | |
5 | opeq1 3779 | . . . . . . . . . . . . . . . . . . . . . . . 24 ⊢ (𝑛 = 1o → ⟨𝑛, 1o⟩ = ⟨1o, 1o⟩) | |
6 | 5 | eceq1d 6571 | . . . . . . . . . . . . . . . . . . . . . . 23 ⊢ (𝑛 = 1o → [⟨𝑛, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q ) |
7 | 6 | fveq2d 5520 | . . . . . . . . . . . . . . . . . . . . . 22 ⊢ (𝑛 = 1o → (*Q‘[⟨𝑛, 1o⟩] ~Q ) = (*Q‘[⟨1o, 1o⟩] ~Q )) |
8 | 7 | breq2d 4016 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝑛 = 1o → (𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q ))) |
9 | 8 | abbidv 2295 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝑛 = 1o → {𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )} = {𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}) |
10 | 7 | breq1d 4014 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝑛 = 1o → ((*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢)) |
11 | 10 | abbidv 2295 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝑛 = 1o → {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}) |
12 | 9, 11 | opeq12d 3787 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝑛 = 1o → ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩) |
13 | 12 | oveq1d 5890 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑛 = 1o → (⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) = (⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) |
14 | 13 | opeq1d 3785 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑛 = 1o → ⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩) |
15 | 14 | eceq1d 6571 | . . . . . . . . . . . . . . . 16 ⊢ (𝑛 = 1o → [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) |
16 | 15 | oveq2d 5891 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) |
17 | 4, 16 | breq12d 4017 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = 1o → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) |
18 | 4, 15 | oveq12d 5893 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → ((𝐹‘𝑛) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹‘1o) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) |
19 | 18 | breq2d 4016 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = 1o → ((𝐹‘𝑘) <R ((𝐹‘𝑛) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) |
20 | 17, 19 | anbi12d 473 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 1o → (((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) ↔ ((𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))) |
21 | 3, 20 | imbi12d 234 | . . . . . . . . . . . 12 ⊢ (𝑛 = 1o → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) ↔ (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))) |
22 | 21 | ralbidv 2477 | . . . . . . . . . . 11 ⊢ (𝑛 = 1o → (∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) ↔ ∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))) |
23 | 1pi 7314 | . . . . . . . . . . . 12 ⊢ 1o ∈ N | |
24 | 23 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝜑 → 1o ∈ N) |
25 | 22, 2, 24 | rspcdva 2847 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))) |
26 | simpl 109 | . . . . . . . . . . . 12 ⊢ (((𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → (𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) | |
27 | 26 | imim2i 12 | . . . . . . . . . . 11 ⊢ ((1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) → (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) |
28 | 27 | ralimi 2540 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) → ∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) |
29 | 25, 28 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) |
30 | breq2 4008 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (1o <N 𝑘 ↔ 1o <N 𝑚)) | |
31 | fveq2 5516 | . . . . . . . . . . . . 13 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
32 | 31 | oveq1d 5890 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹‘𝑚) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) |
33 | 32 | breq2d 4016 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑚) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) |
34 | 30, 33 | imbi12d 234 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑚 → ((1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) ↔ (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))) |
35 | 34 | rspcv 2838 | . . . . . . . . 9 ⊢ (𝑚 ∈ N → (∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))) |
36 | 29, 35 | mpan9 281 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) |
37 | df-1nqqs 7350 | . . . . . . . . . . . . . . . . . . . 20 ⊢ 1Q = [⟨1o, 1o⟩] ~Q | |
38 | 37 | fveq2i 5519 | . . . . . . . . . . . . . . . . . . 19 ⊢ (*Q‘1Q) = (*Q‘[⟨1o, 1o⟩] ~Q ) |
39 | rec1nq 7394 | . . . . . . . . . . . . . . . . . . 19 ⊢ (*Q‘1Q) = 1Q | |
40 | 38, 39 | eqtr3i 2200 | . . . . . . . . . . . . . . . . . 18 ⊢ (*Q‘[⟨1o, 1o⟩] ~Q ) = 1Q |
41 | 40 | breq2i 4012 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q ) ↔ 𝑙 <Q 1Q) |
42 | 41 | abbii 2293 | . . . . . . . . . . . . . . . 16 ⊢ {𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )} = {𝑙 ∣ 𝑙 <Q 1Q} |
43 | 40 | breq1i 4011 | . . . . . . . . . . . . . . . . 17 ⊢ ((*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢 ↔ 1Q <Q 𝑢) |
44 | 43 | abbii 2293 | . . . . . . . . . . . . . . . 16 ⊢ {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢} |
45 | 42, 44 | opeq12i 3784 | . . . . . . . . . . . . . . 15 ⊢ ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩ |
46 | df-i1p 7466 | . . . . . . . . . . . . . . 15 ⊢ 1P = ⟨{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩ | |
47 | 45, 46 | eqtr4i 2201 | . . . . . . . . . . . . . 14 ⊢ ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ = 1P |
48 | 47 | oveq1i 5885 | . . . . . . . . . . . . 13 ⊢ (⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) = (1P +P 1P) |
49 | 48 | opeq1i 3782 | . . . . . . . . . . . 12 ⊢ ⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(1P +P 1P), 1P⟩ |
50 | eceq1 6570 | . . . . . . . . . . . 12 ⊢ (⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(1P +P 1P), 1P⟩ → [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ) | |
51 | 49, 50 | ax-mp 5 | . . . . . . . . . . 11 ⊢ [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R |
52 | df-1r 7731 | . . . . . . . . . . 11 ⊢ 1R = [⟨(1P +P 1P), 1P⟩] ~R | |
53 | 51, 52 | eqtr4i 2201 | . . . . . . . . . 10 ⊢ [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = 1R |
54 | 53 | oveq2i 5886 | . . . . . . . . 9 ⊢ ((𝐹‘𝑚) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹‘𝑚) +R 1R) |
55 | 54 | breq2i 4012 | . . . . . . . 8 ⊢ ((𝐹‘1o) <R ((𝐹‘𝑚) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
56 | 36, 55 | imbitrdi 161 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R))) |
57 | 56 | imp 124 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o <N 𝑚) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
58 | 1 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 𝐹:N⟶R) |
59 | 23 | a1i 9 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1o ∈ N) |
60 | 58, 59 | ffvelcdmd 5653 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) ∈ R) |
61 | ltadd1sr 7775 | . . . . . . . . 9 ⊢ ((𝐹‘1o) ∈ R → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) | |
62 | 60, 61 | syl 14 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) |
63 | 62 | adantr 276 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) |
64 | fveq2 5516 | . . . . . . . . 9 ⊢ (1o = 𝑚 → (𝐹‘1o) = (𝐹‘𝑚)) | |
65 | 64 | oveq1d 5890 | . . . . . . . 8 ⊢ (1o = 𝑚 → ((𝐹‘1o) +R 1R) = ((𝐹‘𝑚) +R 1R)) |
66 | 65 | adantl 277 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → ((𝐹‘1o) +R 1R) = ((𝐹‘𝑚) +R 1R)) |
67 | 63, 66 | breqtrd 4030 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
68 | nlt1pig 7340 | . . . . . . . . 9 ⊢ (𝑚 ∈ N → ¬ 𝑚 <N 1o) | |
69 | 68 | adantl 277 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ¬ 𝑚 <N 1o) |
70 | 69 | pm2.21d 619 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝑚 <N 1o → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R))) |
71 | 70 | imp 124 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 𝑚 <N 1o) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
72 | pitri3or 7321 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 𝑚 ∈ N) → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) | |
73 | 23, 72 | mpan 424 | . . . . . . 7 ⊢ (𝑚 ∈ N → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) |
74 | 73 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) |
75 | 57, 67, 71, 74 | mpjao3dan 1307 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
76 | ltasrg 7769 | . . . . . . 7 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) | |
77 | 76 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R)) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) |
78 | 1 | ffvelcdmda 5652 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘𝑚) ∈ R) |
79 | 1sr 7750 | . . . . . . 7 ⊢ 1R ∈ R | |
80 | addclsr 7752 | . . . . . . 7 ⊢ (((𝐹‘𝑚) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝑚) +R 1R) ∈ R) | |
81 | 78, 79, 80 | sylancl 413 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R 1R) ∈ R) |
82 | m1r 7751 | . . . . . . 7 ⊢ -1R ∈ R | |
83 | 82 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → -1R ∈ R) |
84 | addcomsrg 7754 | . . . . . . 7 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) | |
85 | 84 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) |
86 | 77, 60, 81, 83, 85 | caovord2d 6044 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) <R ((𝐹‘𝑚) +R 1R) ↔ ((𝐹‘1o) +R -1R) <R (((𝐹‘𝑚) +R 1R) +R -1R))) |
87 | 75, 86 | mpbid 147 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) +R -1R) <R (((𝐹‘𝑚) +R 1R) +R -1R)) |
88 | 79 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1R ∈ R) |
89 | addasssrg 7755 | . . . . . 6 ⊢ (((𝐹‘𝑚) ∈ R ∧ 1R ∈ R ∧ -1R ∈ R) → (((𝐹‘𝑚) +R 1R) +R -1R) = ((𝐹‘𝑚) +R (1R +R -1R))) | |
90 | 78, 88, 83, 89 | syl3anc 1238 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (((𝐹‘𝑚) +R 1R) +R -1R) = ((𝐹‘𝑚) +R (1R +R -1R))) |
91 | addcomsrg 7754 | . . . . . . . . 9 ⊢ ((1R ∈ R ∧ -1R ∈ R) → (1R +R -1R) = (-1R +R 1R)) | |
92 | 79, 82, 91 | mp2an 426 | . . . . . . . 8 ⊢ (1R +R -1R) = (-1R +R 1R) |
93 | m1p1sr 7759 | . . . . . . . 8 ⊢ (-1R +R 1R) = 0R | |
94 | 92, 93 | eqtri 2198 | . . . . . . 7 ⊢ (1R +R -1R) = 0R |
95 | 94 | oveq2i 5886 | . . . . . 6 ⊢ ((𝐹‘𝑚) +R (1R +R -1R)) = ((𝐹‘𝑚) +R 0R) |
96 | 0idsr 7766 | . . . . . . 7 ⊢ ((𝐹‘𝑚) ∈ R → ((𝐹‘𝑚) +R 0R) = (𝐹‘𝑚)) | |
97 | 78, 96 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R 0R) = (𝐹‘𝑚)) |
98 | 95, 97 | eqtrid 2222 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R (1R +R -1R)) = (𝐹‘𝑚)) |
99 | 90, 98 | eqtrd 2210 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (((𝐹‘𝑚) +R 1R) +R -1R) = (𝐹‘𝑚)) |
100 | 87, 99 | breqtrd 4030 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) +R -1R) <R (𝐹‘𝑚)) |
101 | 100 | ralrimiva 2550 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N ((𝐹‘1o) +R -1R) <R (𝐹‘𝑚)) |
102 | 1, 2, 101 | caucvgsrlembnd 7800 | 1 ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 977 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∃wrex 2456 ⟨cop 3596 class class class wbr 4004 ⟶wf 5213 ‘cfv 5217 (class class class)co 5875 1oc1o 6410 [cec 6533 Ncnpi 7271 <N clti 7274 ~Q ceq 7278 1Qc1q 7280 *Qcrq 7283 <Q cltq 7284 1Pc1p 7291 +P cpp 7292 ~R cer 7295 Rcnr 7296 0Rc0r 7297 1Rc1r 7298 -1Rcm1r 7299 +R cplr 7300 <R cltr 7302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-eprel 4290 df-id 4294 df-po 4297 df-iso 4298 df-iord 4367 df-on 4369 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-irdg 6371 df-1o 6417 df-2o 6418 df-oadd 6421 df-omul 6422 df-er 6535 df-ec 6537 df-qs 6541 df-ni 7303 df-pli 7304 df-mi 7305 df-lti 7306 df-plpq 7343 df-mpq 7344 df-enq 7346 df-nqqs 7347 df-plqqs 7348 df-mqqs 7349 df-1nqqs 7350 df-rq 7351 df-ltnqqs 7352 df-enq0 7423 df-nq0 7424 df-0nq0 7425 df-plq0 7426 df-mq0 7427 df-inp 7465 df-i1p 7466 df-iplp 7467 df-imp 7468 df-iltp 7469 df-enr 7725 df-nr 7726 df-plr 7727 df-mr 7728 df-ltr 7729 df-0r 7730 df-1r 7731 df-m1r 7732 |
This theorem is referenced by: axcaucvglemres 7898 |
Copyright terms: Public domain | W3C validator |