ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsr GIF version

Theorem caucvgsr 7977
Description: A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7887 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7976).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7972).

3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7887 to get a limit (see caucvgsrlemgt1 7970).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7970).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7975). (Contributed by Jim Kingdon, 20-Jun-2021.)

Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
Assertion
Ref Expression
caucvgsr (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑙,𝑢   𝑛,𝐹,𝑘,𝑙,𝑢   𝑥,𝐹,𝑦,𝑗,𝑘   𝜑,𝑗,𝑘,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑙)

Proof of Theorem caucvgsr
Dummy variables 𝑓 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . 2 (𝜑𝐹:NR)
2 caucvgsr.cau . 2 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3 breq1 4085 . . . . . . . . . . . . 13 (𝑛 = 1o → (𝑛 <N 𝑘 ↔ 1o <N 𝑘))
4 fveq2 5623 . . . . . . . . . . . . . . 15 (𝑛 = 1o → (𝐹𝑛) = (𝐹‘1o))
5 opeq1 3856 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 1o → ⟨𝑛, 1o⟩ = ⟨1o, 1o⟩)
65eceq1d 6706 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 1o → [⟨𝑛, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
76fveq2d 5627 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 1o → (*Q‘[⟨𝑛, 1o⟩] ~Q ) = (*Q‘[⟨1o, 1o⟩] ~Q ))
87breq2d 4094 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1o → (𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )))
98abbidv 2347 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1o → {𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )})
107breq1d 4092 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1o → ((*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢))
1110abbidv 2347 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1o → {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢})
129, 11opeq12d 3864 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1o → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩)
1312oveq1d 6009 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1o → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P))
1413opeq1d 3862 . . . . . . . . . . . . . . . . 17 (𝑛 = 1o → ⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩)
1514eceq1d 6706 . . . . . . . . . . . . . . . 16 (𝑛 = 1o → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1615oveq2d 6010 . . . . . . . . . . . . . . 15 (𝑛 = 1o → ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
174, 16breq12d 4095 . . . . . . . . . . . . . 14 (𝑛 = 1o → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
184, 15oveq12d 6012 . . . . . . . . . . . . . . 15 (𝑛 = 1o → ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
1918breq2d 4094 . . . . . . . . . . . . . 14 (𝑛 = 1o → ((𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
2017, 19anbi12d 473 . . . . . . . . . . . . 13 (𝑛 = 1o → (((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) ↔ ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
213, 20imbi12d 234 . . . . . . . . . . . 12 (𝑛 = 1o → ((𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) ↔ (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))))
2221ralbidv 2530 . . . . . . . . . . 11 (𝑛 = 1o → (∀𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) ↔ ∀𝑘N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))))
23 1pi 7490 . . . . . . . . . . . 12 1oN
2423a1i 9 . . . . . . . . . . 11 (𝜑 → 1oN)
2522, 2, 24rspcdva 2912 . . . . . . . . . 10 (𝜑 → ∀𝑘N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
26 simpl 109 . . . . . . . . . . . 12 (((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
2726imim2i 12 . . . . . . . . . . 11 ((1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) → (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
2827ralimi 2593 . . . . . . . . . 10 (∀𝑘N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) → ∀𝑘N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
2925, 28syl 14 . . . . . . . . 9 (𝜑 → ∀𝑘N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
30 breq2 4086 . . . . . . . . . . 11 (𝑘 = 𝑚 → (1o <N 𝑘 ↔ 1o <N 𝑚))
31 fveq2 5623 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3231oveq1d 6009 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
3332breq2d 4094 . . . . . . . . . . 11 (𝑘 = 𝑚 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
3430, 33imbi12d 234 . . . . . . . . . 10 (𝑘 = 𝑚 → ((1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) ↔ (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3534rspcv 2903 . . . . . . . . 9 (𝑚N → (∀𝑘N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3629, 35mpan9 281 . . . . . . . 8 ((𝜑𝑚N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
37 df-1nqqs 7526 . . . . . . . . . . . . . . . . . . . 20 1Q = [⟨1o, 1o⟩] ~Q
3837fveq2i 5626 . . . . . . . . . . . . . . . . . . 19 (*Q‘1Q) = (*Q‘[⟨1o, 1o⟩] ~Q )
39 rec1nq 7570 . . . . . . . . . . . . . . . . . . 19 (*Q‘1Q) = 1Q
4038, 39eqtr3i 2252 . . . . . . . . . . . . . . . . . 18 (*Q‘[⟨1o, 1o⟩] ~Q ) = 1Q
4140breq2i 4090 . . . . . . . . . . . . . . . . 17 (𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q ) ↔ 𝑙 <Q 1Q)
4241abbii 2345 . . . . . . . . . . . . . . . 16 {𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )} = {𝑙𝑙 <Q 1Q}
4340breq1i 4089 . . . . . . . . . . . . . . . . 17 ((*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢 ↔ 1Q <Q 𝑢)
4443abbii 2345 . . . . . . . . . . . . . . . 16 {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢}
4542, 44opeq12i 3861 . . . . . . . . . . . . . . 15 ⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
46 df-i1p 7642 . . . . . . . . . . . . . . 15 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
4745, 46eqtr4i 2253 . . . . . . . . . . . . . 14 ⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ = 1P
4847oveq1i 6004 . . . . . . . . . . . . 13 (⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) = (1P +P 1P)
4948opeq1i 3859 . . . . . . . . . . . 12 ⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(1P +P 1P), 1P
50 eceq1 6705 . . . . . . . . . . . 12 (⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(1P +P 1P), 1P⟩ → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R )
5149, 50ax-mp 5 . . . . . . . . . . 11 [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R
52 df-1r 7907 . . . . . . . . . . 11 1R = [⟨(1P +P 1P), 1P⟩] ~R
5351, 52eqtr4i 2253 . . . . . . . . . 10 [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = 1R
5453oveq2i 6005 . . . . . . . . 9 ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹𝑚) +R 1R)
5554breq2i 4090 . . . . . . . 8 ((𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
5636, 55imbitrdi 161 . . . . . . 7 ((𝜑𝑚N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R 1R)))
5756imp 124 . . . . . 6 (((𝜑𝑚N) ∧ 1o <N 𝑚) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
581adantr 276 . . . . . . . . . 10 ((𝜑𝑚N) → 𝐹:NR)
5923a1i 9 . . . . . . . . . 10 ((𝜑𝑚N) → 1oN)
6058, 59ffvelcdmd 5764 . . . . . . . . 9 ((𝜑𝑚N) → (𝐹‘1o) ∈ R)
61 ltadd1sr 7951 . . . . . . . . 9 ((𝐹‘1o) ∈ R → (𝐹‘1o) <R ((𝐹‘1o) +R 1R))
6260, 61syl 14 . . . . . . . 8 ((𝜑𝑚N) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R))
6362adantr 276 . . . . . . 7 (((𝜑𝑚N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R))
64 fveq2 5623 . . . . . . . . 9 (1o = 𝑚 → (𝐹‘1o) = (𝐹𝑚))
6564oveq1d 6009 . . . . . . . 8 (1o = 𝑚 → ((𝐹‘1o) +R 1R) = ((𝐹𝑚) +R 1R))
6665adantl 277 . . . . . . 7 (((𝜑𝑚N) ∧ 1o = 𝑚) → ((𝐹‘1o) +R 1R) = ((𝐹𝑚) +R 1R))
6763, 66breqtrd 4108 . . . . . 6 (((𝜑𝑚N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
68 nlt1pig 7516 . . . . . . . . 9 (𝑚N → ¬ 𝑚 <N 1o)
6968adantl 277 . . . . . . . 8 ((𝜑𝑚N) → ¬ 𝑚 <N 1o)
7069pm2.21d 622 . . . . . . 7 ((𝜑𝑚N) → (𝑚 <N 1o → (𝐹‘1o) <R ((𝐹𝑚) +R 1R)))
7170imp 124 . . . . . 6 (((𝜑𝑚N) ∧ 𝑚 <N 1o) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
72 pitri3or 7497 . . . . . . . 8 ((1oN𝑚N) → (1o <N 𝑚 ∨ 1o = 𝑚𝑚 <N 1o))
7323, 72mpan 424 . . . . . . 7 (𝑚N → (1o <N 𝑚 ∨ 1o = 𝑚𝑚 <N 1o))
7473adantl 277 . . . . . 6 ((𝜑𝑚N) → (1o <N 𝑚 ∨ 1o = 𝑚𝑚 <N 1o))
7557, 67, 71, 74mpjao3dan 1341 . . . . 5 ((𝜑𝑚N) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
76 ltasrg 7945 . . . . . . 7 ((𝑓R𝑔RR) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
7776adantl 277 . . . . . 6 (((𝜑𝑚N) ∧ (𝑓R𝑔RR)) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
781ffvelcdmda 5763 . . . . . . 7 ((𝜑𝑚N) → (𝐹𝑚) ∈ R)
79 1sr 7926 . . . . . . 7 1RR
80 addclsr 7928 . . . . . . 7 (((𝐹𝑚) ∈ R ∧ 1RR) → ((𝐹𝑚) +R 1R) ∈ R)
8178, 79, 80sylancl 413 . . . . . 6 ((𝜑𝑚N) → ((𝐹𝑚) +R 1R) ∈ R)
82 m1r 7927 . . . . . . 7 -1RR
8382a1i 9 . . . . . 6 ((𝜑𝑚N) → -1RR)
84 addcomsrg 7930 . . . . . . 7 ((𝑓R𝑔R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
8584adantl 277 . . . . . 6 (((𝜑𝑚N) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
8677, 60, 81, 83, 85caovord2d 6166 . . . . 5 ((𝜑𝑚N) → ((𝐹‘1o) <R ((𝐹𝑚) +R 1R) ↔ ((𝐹‘1o) +R -1R) <R (((𝐹𝑚) +R 1R) +R -1R)))
8775, 86mpbid 147 . . . 4 ((𝜑𝑚N) → ((𝐹‘1o) +R -1R) <R (((𝐹𝑚) +R 1R) +R -1R))
8879a1i 9 . . . . . 6 ((𝜑𝑚N) → 1RR)
89 addasssrg 7931 . . . . . 6 (((𝐹𝑚) ∈ R ∧ 1RR ∧ -1RR) → (((𝐹𝑚) +R 1R) +R -1R) = ((𝐹𝑚) +R (1R +R -1R)))
9078, 88, 83, 89syl3anc 1271 . . . . 5 ((𝜑𝑚N) → (((𝐹𝑚) +R 1R) +R -1R) = ((𝐹𝑚) +R (1R +R -1R)))
91 addcomsrg 7930 . . . . . . . . 9 ((1RR ∧ -1RR) → (1R +R -1R) = (-1R +R 1R))
9279, 82, 91mp2an 426 . . . . . . . 8 (1R +R -1R) = (-1R +R 1R)
93 m1p1sr 7935 . . . . . . . 8 (-1R +R 1R) = 0R
9492, 93eqtri 2250 . . . . . . 7 (1R +R -1R) = 0R
9594oveq2i 6005 . . . . . 6 ((𝐹𝑚) +R (1R +R -1R)) = ((𝐹𝑚) +R 0R)
96 0idsr 7942 . . . . . . 7 ((𝐹𝑚) ∈ R → ((𝐹𝑚) +R 0R) = (𝐹𝑚))
9778, 96syl 14 . . . . . 6 ((𝜑𝑚N) → ((𝐹𝑚) +R 0R) = (𝐹𝑚))
9895, 97eqtrid 2274 . . . . 5 ((𝜑𝑚N) → ((𝐹𝑚) +R (1R +R -1R)) = (𝐹𝑚))
9990, 98eqtrd 2262 . . . 4 ((𝜑𝑚N) → (((𝐹𝑚) +R 1R) +R -1R) = (𝐹𝑚))
10087, 99breqtrd 4108 . . 3 ((𝜑𝑚N) → ((𝐹‘1o) +R -1R) <R (𝐹𝑚))
101100ralrimiva 2603 . 2 (𝜑 → ∀𝑚N ((𝐹‘1o) +R -1R) <R (𝐹𝑚))
1021, 2, 101caucvgsrlembnd 7976 1 (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 1001  w3a 1002   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  cop 3669   class class class wbr 4082  wf 5310  cfv 5314  (class class class)co 5994  1oc1o 6545  [cec 6668  Ncnpi 7447   <N clti 7450   ~Q ceq 7454  1Qc1q 7456  *Qcrq 7459   <Q cltq 7460  1Pc1p 7467   +P cpp 7468   ~R cer 7471  Rcnr 7472  0Rc0r 7473  1Rc1r 7474  -1Rcm1r 7475   +R cplr 7476   <R cltr 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-2o 6553  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-enq0 7599  df-nq0 7600  df-0nq0 7601  df-plq0 7602  df-mq0 7603  df-inp 7641  df-i1p 7642  df-iplp 7643  df-imp 7644  df-iltp 7645  df-enr 7901  df-nr 7902  df-plr 7903  df-mr 7904  df-ltr 7905  df-0r 7906  df-1r 7907  df-m1r 7908
This theorem is referenced by:  axcaucvglemres  8074
  Copyright terms: Public domain W3C validator