| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsr | GIF version | ||
| Description: A Cauchy sequence of
signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within 1 / 𝑛 of the nth term
(it should later be able to prove versions of this theorem with a
different fixed rate or a modulus of convergence supplied as a
hypothesis).
This is similar to caucvgprpr 7887 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7976). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7972). 3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7887 to get a limit (see caucvgsrlemgt1 7970). 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7970). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7975). (Contributed by Jim Kingdon, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| Ref | Expression |
|---|---|
| caucvgsr | ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsr.f | . 2 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 2 | caucvgsr.cau | . 2 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
| 3 | breq1 4085 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 1o → (𝑛 <N 𝑘 ↔ 1o <N 𝑘)) | |
| 4 | fveq2 5623 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → (𝐹‘𝑛) = (𝐹‘1o)) | |
| 5 | opeq1 3856 | . . . . . . . . . . . . . . . . . . . . . . . 24 ⊢ (𝑛 = 1o → 〈𝑛, 1o〉 = 〈1o, 1o〉) | |
| 6 | 5 | eceq1d 6706 | . . . . . . . . . . . . . . . . . . . . . . 23 ⊢ (𝑛 = 1o → [〈𝑛, 1o〉] ~Q = [〈1o, 1o〉] ~Q ) |
| 7 | 6 | fveq2d 5627 | . . . . . . . . . . . . . . . . . . . . . 22 ⊢ (𝑛 = 1o → (*Q‘[〈𝑛, 1o〉] ~Q ) = (*Q‘[〈1o, 1o〉] ~Q )) |
| 8 | 7 | breq2d 4094 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝑛 = 1o → (𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q ) ↔ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q ))) |
| 9 | 8 | abbidv 2347 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝑛 = 1o → {𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )} = {𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}) |
| 10 | 7 | breq1d 4092 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝑛 = 1o → ((*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢 ↔ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢)) |
| 11 | 10 | abbidv 2347 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝑛 = 1o → {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}) |
| 12 | 9, 11 | opeq12d 3864 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝑛 = 1o → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉) |
| 13 | 12 | oveq1d 6009 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑛 = 1o → (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P) = (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P)) |
| 14 | 13 | opeq1d 3862 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑛 = 1o → 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉) |
| 15 | 14 | eceq1d 6706 | . . . . . . . . . . . . . . . 16 ⊢ (𝑛 = 1o → [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) |
| 16 | 15 | oveq2d 6010 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) |
| 17 | 4, 16 | breq12d 4095 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = 1o → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 18 | 4, 15 | oveq12d 6012 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) |
| 19 | 18 | breq2d 4094 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = 1o → ((𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 20 | 17, 19 | anbi12d 473 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 1o → (((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) ↔ ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 21 | 3, 20 | imbi12d 234 | . . . . . . . . . . . 12 ⊢ (𝑛 = 1o → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) ↔ (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))))) |
| 22 | 21 | ralbidv 2530 | . . . . . . . . . . 11 ⊢ (𝑛 = 1o → (∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) ↔ ∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))))) |
| 23 | 1pi 7490 | . . . . . . . . . . . 12 ⊢ 1o ∈ N | |
| 24 | 23 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝜑 → 1o ∈ N) |
| 25 | 22, 2, 24 | rspcdva 2912 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 26 | simpl 109 | . . . . . . . . . . . 12 ⊢ (((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) | |
| 27 | 26 | imim2i 12 | . . . . . . . . . . 11 ⊢ ((1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) → (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 28 | 27 | ralimi 2593 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) → ∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 29 | 25, 28 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 30 | breq2 4086 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (1o <N 𝑘 ↔ 1o <N 𝑚)) | |
| 31 | fveq2 5623 | . . . . . . . . . . . . 13 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
| 32 | 31 | oveq1d 6009 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) |
| 33 | 32 | breq2d 4094 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 34 | 30, 33 | imbi12d 234 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑚 → ((1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) ↔ (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 35 | 34 | rspcv 2903 | . . . . . . . . 9 ⊢ (𝑚 ∈ N → (∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 36 | 29, 35 | mpan9 281 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 37 | df-1nqqs 7526 | . . . . . . . . . . . . . . . . . . . 20 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 38 | 37 | fveq2i 5626 | . . . . . . . . . . . . . . . . . . 19 ⊢ (*Q‘1Q) = (*Q‘[〈1o, 1o〉] ~Q ) |
| 39 | rec1nq 7570 | . . . . . . . . . . . . . . . . . . 19 ⊢ (*Q‘1Q) = 1Q | |
| 40 | 38, 39 | eqtr3i 2252 | . . . . . . . . . . . . . . . . . 18 ⊢ (*Q‘[〈1o, 1o〉] ~Q ) = 1Q |
| 41 | 40 | breq2i 4090 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q ) ↔ 𝑙 <Q 1Q) |
| 42 | 41 | abbii 2345 | . . . . . . . . . . . . . . . 16 ⊢ {𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )} = {𝑙 ∣ 𝑙 <Q 1Q} |
| 43 | 40 | breq1i 4089 | . . . . . . . . . . . . . . . . 17 ⊢ ((*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢 ↔ 1Q <Q 𝑢) |
| 44 | 43 | abbii 2345 | . . . . . . . . . . . . . . . 16 ⊢ {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢} |
| 45 | 42, 44 | opeq12i 3861 | . . . . . . . . . . . . . . 15 ⊢ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 |
| 46 | df-i1p 7642 | . . . . . . . . . . . . . . 15 ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | |
| 47 | 45, 46 | eqtr4i 2253 | . . . . . . . . . . . . . 14 ⊢ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 = 1P |
| 48 | 47 | oveq1i 6004 | . . . . . . . . . . . . 13 ⊢ (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P) = (1P +P 1P) |
| 49 | 48 | opeq1i 3859 | . . . . . . . . . . . 12 ⊢ 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(1P +P 1P), 1P〉 |
| 50 | eceq1 6705 | . . . . . . . . . . . 12 ⊢ (〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(1P +P 1P), 1P〉 → [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(1P +P 1P), 1P〉] ~R ) | |
| 51 | 49, 50 | ax-mp 5 | . . . . . . . . . . 11 ⊢ [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(1P +P 1P), 1P〉] ~R |
| 52 | df-1r 7907 | . . . . . . . . . . 11 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 53 | 51, 52 | eqtr4i 2253 | . . . . . . . . . 10 ⊢ [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = 1R |
| 54 | 53 | oveq2i 6005 | . . . . . . . . 9 ⊢ ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑚) +R 1R) |
| 55 | 54 | breq2i 4090 | . . . . . . . 8 ⊢ ((𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 56 | 36, 55 | imbitrdi 161 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R))) |
| 57 | 56 | imp 124 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o <N 𝑚) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 58 | 1 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 𝐹:N⟶R) |
| 59 | 23 | a1i 9 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1o ∈ N) |
| 60 | 58, 59 | ffvelcdmd 5764 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) ∈ R) |
| 61 | ltadd1sr 7951 | . . . . . . . . 9 ⊢ ((𝐹‘1o) ∈ R → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) | |
| 62 | 60, 61 | syl 14 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) |
| 63 | 62 | adantr 276 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) |
| 64 | fveq2 5623 | . . . . . . . . 9 ⊢ (1o = 𝑚 → (𝐹‘1o) = (𝐹‘𝑚)) | |
| 65 | 64 | oveq1d 6009 | . . . . . . . 8 ⊢ (1o = 𝑚 → ((𝐹‘1o) +R 1R) = ((𝐹‘𝑚) +R 1R)) |
| 66 | 65 | adantl 277 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → ((𝐹‘1o) +R 1R) = ((𝐹‘𝑚) +R 1R)) |
| 67 | 63, 66 | breqtrd 4108 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 68 | nlt1pig 7516 | . . . . . . . . 9 ⊢ (𝑚 ∈ N → ¬ 𝑚 <N 1o) | |
| 69 | 68 | adantl 277 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ¬ 𝑚 <N 1o) |
| 70 | 69 | pm2.21d 622 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝑚 <N 1o → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R))) |
| 71 | 70 | imp 124 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 𝑚 <N 1o) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 72 | pitri3or 7497 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 𝑚 ∈ N) → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) | |
| 73 | 23, 72 | mpan 424 | . . . . . . 7 ⊢ (𝑚 ∈ N → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) |
| 74 | 73 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) |
| 75 | 57, 67, 71, 74 | mpjao3dan 1341 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 76 | ltasrg 7945 | . . . . . . 7 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) | |
| 77 | 76 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R)) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) |
| 78 | 1 | ffvelcdmda 5763 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘𝑚) ∈ R) |
| 79 | 1sr 7926 | . . . . . . 7 ⊢ 1R ∈ R | |
| 80 | addclsr 7928 | . . . . . . 7 ⊢ (((𝐹‘𝑚) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝑚) +R 1R) ∈ R) | |
| 81 | 78, 79, 80 | sylancl 413 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R 1R) ∈ R) |
| 82 | m1r 7927 | . . . . . . 7 ⊢ -1R ∈ R | |
| 83 | 82 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → -1R ∈ R) |
| 84 | addcomsrg 7930 | . . . . . . 7 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) | |
| 85 | 84 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) |
| 86 | 77, 60, 81, 83, 85 | caovord2d 6166 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) <R ((𝐹‘𝑚) +R 1R) ↔ ((𝐹‘1o) +R -1R) <R (((𝐹‘𝑚) +R 1R) +R -1R))) |
| 87 | 75, 86 | mpbid 147 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) +R -1R) <R (((𝐹‘𝑚) +R 1R) +R -1R)) |
| 88 | 79 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1R ∈ R) |
| 89 | addasssrg 7931 | . . . . . 6 ⊢ (((𝐹‘𝑚) ∈ R ∧ 1R ∈ R ∧ -1R ∈ R) → (((𝐹‘𝑚) +R 1R) +R -1R) = ((𝐹‘𝑚) +R (1R +R -1R))) | |
| 90 | 78, 88, 83, 89 | syl3anc 1271 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (((𝐹‘𝑚) +R 1R) +R -1R) = ((𝐹‘𝑚) +R (1R +R -1R))) |
| 91 | addcomsrg 7930 | . . . . . . . . 9 ⊢ ((1R ∈ R ∧ -1R ∈ R) → (1R +R -1R) = (-1R +R 1R)) | |
| 92 | 79, 82, 91 | mp2an 426 | . . . . . . . 8 ⊢ (1R +R -1R) = (-1R +R 1R) |
| 93 | m1p1sr 7935 | . . . . . . . 8 ⊢ (-1R +R 1R) = 0R | |
| 94 | 92, 93 | eqtri 2250 | . . . . . . 7 ⊢ (1R +R -1R) = 0R |
| 95 | 94 | oveq2i 6005 | . . . . . 6 ⊢ ((𝐹‘𝑚) +R (1R +R -1R)) = ((𝐹‘𝑚) +R 0R) |
| 96 | 0idsr 7942 | . . . . . . 7 ⊢ ((𝐹‘𝑚) ∈ R → ((𝐹‘𝑚) +R 0R) = (𝐹‘𝑚)) | |
| 97 | 78, 96 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R 0R) = (𝐹‘𝑚)) |
| 98 | 95, 97 | eqtrid 2274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R (1R +R -1R)) = (𝐹‘𝑚)) |
| 99 | 90, 98 | eqtrd 2262 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (((𝐹‘𝑚) +R 1R) +R -1R) = (𝐹‘𝑚)) |
| 100 | 87, 99 | breqtrd 4108 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) +R -1R) <R (𝐹‘𝑚)) |
| 101 | 100 | ralrimiva 2603 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N ((𝐹‘1o) +R -1R) <R (𝐹‘𝑚)) |
| 102 | 1, 2, 101 | caucvgsrlembnd 7976 | 1 ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 1001 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 〈cop 3669 class class class wbr 4082 ⟶wf 5310 ‘cfv 5314 (class class class)co 5994 1oc1o 6545 [cec 6668 Ncnpi 7447 <N clti 7450 ~Q ceq 7454 1Qc1q 7456 *Qcrq 7459 <Q cltq 7460 1Pc1p 7467 +P cpp 7468 ~R cer 7471 Rcnr 7472 0Rc0r 7473 1Rc1r 7474 -1Rcm1r 7475 +R cplr 7476 <R cltr 7478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4377 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-1o 6552 df-2o 6553 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-pli 7480 df-mi 7481 df-lti 7482 df-plpq 7519 df-mpq 7520 df-enq 7522 df-nqqs 7523 df-plqqs 7524 df-mqqs 7525 df-1nqqs 7526 df-rq 7527 df-ltnqqs 7528 df-enq0 7599 df-nq0 7600 df-0nq0 7601 df-plq0 7602 df-mq0 7603 df-inp 7641 df-i1p 7642 df-iplp 7643 df-imp 7644 df-iltp 7645 df-enr 7901 df-nr 7902 df-plr 7903 df-mr 7904 df-ltr 7905 df-0r 7906 df-1r 7907 df-m1r 7908 |
| This theorem is referenced by: axcaucvglemres 8074 |
| Copyright terms: Public domain | W3C validator |