| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > caucvgsr | GIF version | ||
| Description: A Cauchy sequence of
signed reals with a modulus of convergence
         converges to a signed real.  This is basically Corollary 11.2.13 of
         [HoTT], p.  (varies).  The HoTT book
theorem has a modulus of
         convergence (that is, a rate of convergence) specified by (11.2.9) in
         HoTT whereas this theorem fixes the rate of convergence to say that
         all terms after the nth term must be within 1 / 𝑛 of the nth term
         (it should later be able to prove versions of this theorem with a
         different fixed rate or a modulus of convergence supplied as a
         hypothesis).
 This is similar to caucvgprpr 7779 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7868). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7864). 3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7779 to get a limit (see caucvgsrlemgt1 7862). 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7862). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7867). (Contributed by Jim Kingdon, 20-Jun-2021.)  | 
| Ref | Expression | 
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) | 
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | 
| Ref | Expression | 
|---|---|
| caucvgsr | ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caucvgsr.f | . 2 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 2 | caucvgsr.cau | . 2 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
| 3 | breq1 4036 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 1o → (𝑛 <N 𝑘 ↔ 1o <N 𝑘)) | |
| 4 | fveq2 5558 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → (𝐹‘𝑛) = (𝐹‘1o)) | |
| 5 | opeq1 3808 | . . . . . . . . . . . . . . . . . . . . . . . 24 ⊢ (𝑛 = 1o → 〈𝑛, 1o〉 = 〈1o, 1o〉) | |
| 6 | 5 | eceq1d 6628 | . . . . . . . . . . . . . . . . . . . . . . 23 ⊢ (𝑛 = 1o → [〈𝑛, 1o〉] ~Q = [〈1o, 1o〉] ~Q ) | 
| 7 | 6 | fveq2d 5562 | . . . . . . . . . . . . . . . . . . . . . 22 ⊢ (𝑛 = 1o → (*Q‘[〈𝑛, 1o〉] ~Q ) = (*Q‘[〈1o, 1o〉] ~Q )) | 
| 8 | 7 | breq2d 4045 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝑛 = 1o → (𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q ) ↔ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q ))) | 
| 9 | 8 | abbidv 2314 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝑛 = 1o → {𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )} = {𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}) | 
| 10 | 7 | breq1d 4043 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝑛 = 1o → ((*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢 ↔ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢)) | 
| 11 | 10 | abbidv 2314 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝑛 = 1o → {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}) | 
| 12 | 9, 11 | opeq12d 3816 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝑛 = 1o → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉) | 
| 13 | 12 | oveq1d 5937 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑛 = 1o → (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P) = (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P)) | 
| 14 | 13 | opeq1d 3814 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑛 = 1o → 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉) | 
| 15 | 14 | eceq1d 6628 | . . . . . . . . . . . . . . . 16 ⊢ (𝑛 = 1o → [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) | 
| 16 | 15 | oveq2d 5938 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) | 
| 17 | 4, 16 | breq12d 4046 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = 1o → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) | 
| 18 | 4, 15 | oveq12d 5940 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) | 
| 19 | 18 | breq2d 4045 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = 1o → ((𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) | 
| 20 | 17, 19 | anbi12d 473 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 1o → (((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) ↔ ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | 
| 21 | 3, 20 | imbi12d 234 | . . . . . . . . . . . 12 ⊢ (𝑛 = 1o → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) ↔ (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))))) | 
| 22 | 21 | ralbidv 2497 | . . . . . . . . . . 11 ⊢ (𝑛 = 1o → (∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) ↔ ∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))))) | 
| 23 | 1pi 7382 | . . . . . . . . . . . 12 ⊢ 1o ∈ N | |
| 24 | 23 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝜑 → 1o ∈ N) | 
| 25 | 22, 2, 24 | rspcdva 2873 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | 
| 26 | simpl 109 | . . . . . . . . . . . 12 ⊢ (((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) | |
| 27 | 26 | imim2i 12 | . . . . . . . . . . 11 ⊢ ((1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) → (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) | 
| 28 | 27 | ralimi 2560 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) → ∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) | 
| 29 | 25, 28 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) | 
| 30 | breq2 4037 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (1o <N 𝑘 ↔ 1o <N 𝑚)) | |
| 31 | fveq2 5558 | . . . . . . . . . . . . 13 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
| 32 | 31 | oveq1d 5937 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) | 
| 33 | 32 | breq2d 4045 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) | 
| 34 | 30, 33 | imbi12d 234 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑚 → ((1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) ↔ (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | 
| 35 | 34 | rspcv 2864 | . . . . . . . . 9 ⊢ (𝑚 ∈ N → (∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | 
| 36 | 29, 35 | mpan9 281 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) | 
| 37 | df-1nqqs 7418 | . . . . . . . . . . . . . . . . . . . 20 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 38 | 37 | fveq2i 5561 | . . . . . . . . . . . . . . . . . . 19 ⊢ (*Q‘1Q) = (*Q‘[〈1o, 1o〉] ~Q ) | 
| 39 | rec1nq 7462 | . . . . . . . . . . . . . . . . . . 19 ⊢ (*Q‘1Q) = 1Q | |
| 40 | 38, 39 | eqtr3i 2219 | . . . . . . . . . . . . . . . . . 18 ⊢ (*Q‘[〈1o, 1o〉] ~Q ) = 1Q | 
| 41 | 40 | breq2i 4041 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q ) ↔ 𝑙 <Q 1Q) | 
| 42 | 41 | abbii 2312 | . . . . . . . . . . . . . . . 16 ⊢ {𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )} = {𝑙 ∣ 𝑙 <Q 1Q} | 
| 43 | 40 | breq1i 4040 | . . . . . . . . . . . . . . . . 17 ⊢ ((*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢 ↔ 1Q <Q 𝑢) | 
| 44 | 43 | abbii 2312 | . . . . . . . . . . . . . . . 16 ⊢ {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢} | 
| 45 | 42, 44 | opeq12i 3813 | . . . . . . . . . . . . . . 15 ⊢ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | 
| 46 | df-i1p 7534 | . . . . . . . . . . . . . . 15 ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | |
| 47 | 45, 46 | eqtr4i 2220 | . . . . . . . . . . . . . 14 ⊢ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 = 1P | 
| 48 | 47 | oveq1i 5932 | . . . . . . . . . . . . 13 ⊢ (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P) = (1P +P 1P) | 
| 49 | 48 | opeq1i 3811 | . . . . . . . . . . . 12 ⊢ 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(1P +P 1P), 1P〉 | 
| 50 | eceq1 6627 | . . . . . . . . . . . 12 ⊢ (〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(1P +P 1P), 1P〉 → [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(1P +P 1P), 1P〉] ~R ) | |
| 51 | 49, 50 | ax-mp 5 | . . . . . . . . . . 11 ⊢ [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(1P +P 1P), 1P〉] ~R | 
| 52 | df-1r 7799 | . . . . . . . . . . 11 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 53 | 51, 52 | eqtr4i 2220 | . . . . . . . . . 10 ⊢ [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = 1R | 
| 54 | 53 | oveq2i 5933 | . . . . . . . . 9 ⊢ ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑚) +R 1R) | 
| 55 | 54 | breq2i 4041 | . . . . . . . 8 ⊢ ((𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) | 
| 56 | 36, 55 | imbitrdi 161 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R))) | 
| 57 | 56 | imp 124 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o <N 𝑚) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) | 
| 58 | 1 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 𝐹:N⟶R) | 
| 59 | 23 | a1i 9 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1o ∈ N) | 
| 60 | 58, 59 | ffvelcdmd 5698 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) ∈ R) | 
| 61 | ltadd1sr 7843 | . . . . . . . . 9 ⊢ ((𝐹‘1o) ∈ R → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) | |
| 62 | 60, 61 | syl 14 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) | 
| 63 | 62 | adantr 276 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) | 
| 64 | fveq2 5558 | . . . . . . . . 9 ⊢ (1o = 𝑚 → (𝐹‘1o) = (𝐹‘𝑚)) | |
| 65 | 64 | oveq1d 5937 | . . . . . . . 8 ⊢ (1o = 𝑚 → ((𝐹‘1o) +R 1R) = ((𝐹‘𝑚) +R 1R)) | 
| 66 | 65 | adantl 277 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → ((𝐹‘1o) +R 1R) = ((𝐹‘𝑚) +R 1R)) | 
| 67 | 63, 66 | breqtrd 4059 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) | 
| 68 | nlt1pig 7408 | . . . . . . . . 9 ⊢ (𝑚 ∈ N → ¬ 𝑚 <N 1o) | |
| 69 | 68 | adantl 277 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ¬ 𝑚 <N 1o) | 
| 70 | 69 | pm2.21d 620 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝑚 <N 1o → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R))) | 
| 71 | 70 | imp 124 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 𝑚 <N 1o) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) | 
| 72 | pitri3or 7389 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 𝑚 ∈ N) → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) | |
| 73 | 23, 72 | mpan 424 | . . . . . . 7 ⊢ (𝑚 ∈ N → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) | 
| 74 | 73 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) | 
| 75 | 57, 67, 71, 74 | mpjao3dan 1318 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) | 
| 76 | ltasrg 7837 | . . . . . . 7 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) | |
| 77 | 76 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R)) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) | 
| 78 | 1 | ffvelcdmda 5697 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘𝑚) ∈ R) | 
| 79 | 1sr 7818 | . . . . . . 7 ⊢ 1R ∈ R | |
| 80 | addclsr 7820 | . . . . . . 7 ⊢ (((𝐹‘𝑚) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝑚) +R 1R) ∈ R) | |
| 81 | 78, 79, 80 | sylancl 413 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R 1R) ∈ R) | 
| 82 | m1r 7819 | . . . . . . 7 ⊢ -1R ∈ R | |
| 83 | 82 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → -1R ∈ R) | 
| 84 | addcomsrg 7822 | . . . . . . 7 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) | |
| 85 | 84 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) | 
| 86 | 77, 60, 81, 83, 85 | caovord2d 6093 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) <R ((𝐹‘𝑚) +R 1R) ↔ ((𝐹‘1o) +R -1R) <R (((𝐹‘𝑚) +R 1R) +R -1R))) | 
| 87 | 75, 86 | mpbid 147 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) +R -1R) <R (((𝐹‘𝑚) +R 1R) +R -1R)) | 
| 88 | 79 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1R ∈ R) | 
| 89 | addasssrg 7823 | . . . . . 6 ⊢ (((𝐹‘𝑚) ∈ R ∧ 1R ∈ R ∧ -1R ∈ R) → (((𝐹‘𝑚) +R 1R) +R -1R) = ((𝐹‘𝑚) +R (1R +R -1R))) | |
| 90 | 78, 88, 83, 89 | syl3anc 1249 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (((𝐹‘𝑚) +R 1R) +R -1R) = ((𝐹‘𝑚) +R (1R +R -1R))) | 
| 91 | addcomsrg 7822 | . . . . . . . . 9 ⊢ ((1R ∈ R ∧ -1R ∈ R) → (1R +R -1R) = (-1R +R 1R)) | |
| 92 | 79, 82, 91 | mp2an 426 | . . . . . . . 8 ⊢ (1R +R -1R) = (-1R +R 1R) | 
| 93 | m1p1sr 7827 | . . . . . . . 8 ⊢ (-1R +R 1R) = 0R | |
| 94 | 92, 93 | eqtri 2217 | . . . . . . 7 ⊢ (1R +R -1R) = 0R | 
| 95 | 94 | oveq2i 5933 | . . . . . 6 ⊢ ((𝐹‘𝑚) +R (1R +R -1R)) = ((𝐹‘𝑚) +R 0R) | 
| 96 | 0idsr 7834 | . . . . . . 7 ⊢ ((𝐹‘𝑚) ∈ R → ((𝐹‘𝑚) +R 0R) = (𝐹‘𝑚)) | |
| 97 | 78, 96 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R 0R) = (𝐹‘𝑚)) | 
| 98 | 95, 97 | eqtrid 2241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R (1R +R -1R)) = (𝐹‘𝑚)) | 
| 99 | 90, 98 | eqtrd 2229 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (((𝐹‘𝑚) +R 1R) +R -1R) = (𝐹‘𝑚)) | 
| 100 | 87, 99 | breqtrd 4059 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) +R -1R) <R (𝐹‘𝑚)) | 
| 101 | 100 | ralrimiva 2570 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N ((𝐹‘1o) +R -1R) <R (𝐹‘𝑚)) | 
| 102 | 1, 2, 101 | caucvgsrlembnd 7868 | 1 ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 979 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∃wrex 2476 〈cop 3625 class class class wbr 4033 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 1oc1o 6467 [cec 6590 Ncnpi 7339 <N clti 7342 ~Q ceq 7346 1Qc1q 7348 *Qcrq 7351 <Q cltq 7352 1Pc1p 7359 +P cpp 7360 ~R cer 7363 Rcnr 7364 0Rc0r 7365 1Rc1r 7366 -1Rcm1r 7367 +R cplr 7368 <R cltr 7370 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-iplp 7535 df-imp 7536 df-iltp 7537 df-enr 7793 df-nr 7794 df-plr 7795 df-mr 7796 df-ltr 7797 df-0r 7798 df-1r 7799 df-m1r 7800 | 
| This theorem is referenced by: axcaucvglemres 7966 | 
| Copyright terms: Public domain | W3C validator |