| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsr | GIF version | ||
| Description: A Cauchy sequence of
signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within 1 / 𝑛 of the nth term
(it should later be able to prove versions of this theorem with a
different fixed rate or a modulus of convergence supplied as a
hypothesis).
This is similar to caucvgprpr 7838 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7927). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7923). 3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7838 to get a limit (see caucvgsrlemgt1 7921). 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7921). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7926). (Contributed by Jim Kingdon, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| Ref | Expression |
|---|---|
| caucvgsr | ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsr.f | . 2 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 2 | caucvgsr.cau | . 2 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
| 3 | breq1 4051 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 1o → (𝑛 <N 𝑘 ↔ 1o <N 𝑘)) | |
| 4 | fveq2 5586 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → (𝐹‘𝑛) = (𝐹‘1o)) | |
| 5 | opeq1 3822 | . . . . . . . . . . . . . . . . . . . . . . . 24 ⊢ (𝑛 = 1o → 〈𝑛, 1o〉 = 〈1o, 1o〉) | |
| 6 | 5 | eceq1d 6666 | . . . . . . . . . . . . . . . . . . . . . . 23 ⊢ (𝑛 = 1o → [〈𝑛, 1o〉] ~Q = [〈1o, 1o〉] ~Q ) |
| 7 | 6 | fveq2d 5590 | . . . . . . . . . . . . . . . . . . . . . 22 ⊢ (𝑛 = 1o → (*Q‘[〈𝑛, 1o〉] ~Q ) = (*Q‘[〈1o, 1o〉] ~Q )) |
| 8 | 7 | breq2d 4060 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝑛 = 1o → (𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q ) ↔ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q ))) |
| 9 | 8 | abbidv 2324 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝑛 = 1o → {𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )} = {𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}) |
| 10 | 7 | breq1d 4058 | . . . . . . . . . . . . . . . . . . . . 21 ⊢ (𝑛 = 1o → ((*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢 ↔ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢)) |
| 11 | 10 | abbidv 2324 | . . . . . . . . . . . . . . . . . . . 20 ⊢ (𝑛 = 1o → {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}) |
| 12 | 9, 11 | opeq12d 3830 | . . . . . . . . . . . . . . . . . . 19 ⊢ (𝑛 = 1o → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉) |
| 13 | 12 | oveq1d 5969 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑛 = 1o → (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P) = (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P)) |
| 14 | 13 | opeq1d 3828 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑛 = 1o → 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉) |
| 15 | 14 | eceq1d 6666 | . . . . . . . . . . . . . . . 16 ⊢ (𝑛 = 1o → [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) |
| 16 | 15 | oveq2d 5970 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) |
| 17 | 4, 16 | breq12d 4061 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = 1o → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 18 | 4, 15 | oveq12d 5972 | . . . . . . . . . . . . . . 15 ⊢ (𝑛 = 1o → ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) |
| 19 | 18 | breq2d 4060 | . . . . . . . . . . . . . 14 ⊢ (𝑛 = 1o → ((𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 20 | 17, 19 | anbi12d 473 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 1o → (((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) ↔ ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 21 | 3, 20 | imbi12d 234 | . . . . . . . . . . . 12 ⊢ (𝑛 = 1o → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) ↔ (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))))) |
| 22 | 21 | ralbidv 2507 | . . . . . . . . . . 11 ⊢ (𝑛 = 1o → (∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) ↔ ∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))))) |
| 23 | 1pi 7441 | . . . . . . . . . . . 12 ⊢ 1o ∈ N | |
| 24 | 23 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝜑 → 1o ∈ N) |
| 25 | 22, 2, 24 | rspcdva 2884 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 26 | simpl 109 | . . . . . . . . . . . 12 ⊢ (((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) | |
| 27 | 26 | imim2i 12 | . . . . . . . . . . 11 ⊢ ((1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) → (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 28 | 27 | ralimi 2570 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘1o) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) → ∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 29 | 25, 28 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 30 | breq2 4052 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (1o <N 𝑘 ↔ 1o <N 𝑚)) | |
| 31 | fveq2 5586 | . . . . . . . . . . . . 13 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
| 32 | 31 | oveq1d 5969 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) |
| 33 | 32 | breq2d 4060 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → ((𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 34 | 30, 33 | imbi12d 234 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑚 → ((1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) ↔ (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 35 | 34 | rspcv 2875 | . . . . . . . . 9 ⊢ (𝑚 ∈ N → (∀𝑘 ∈ N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| 36 | 29, 35 | mpan9 281 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ))) |
| 37 | df-1nqqs 7477 | . . . . . . . . . . . . . . . . . . . 20 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 38 | 37 | fveq2i 5589 | . . . . . . . . . . . . . . . . . . 19 ⊢ (*Q‘1Q) = (*Q‘[〈1o, 1o〉] ~Q ) |
| 39 | rec1nq 7521 | . . . . . . . . . . . . . . . . . . 19 ⊢ (*Q‘1Q) = 1Q | |
| 40 | 38, 39 | eqtr3i 2229 | . . . . . . . . . . . . . . . . . 18 ⊢ (*Q‘[〈1o, 1o〉] ~Q ) = 1Q |
| 41 | 40 | breq2i 4056 | . . . . . . . . . . . . . . . . 17 ⊢ (𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q ) ↔ 𝑙 <Q 1Q) |
| 42 | 41 | abbii 2322 | . . . . . . . . . . . . . . . 16 ⊢ {𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )} = {𝑙 ∣ 𝑙 <Q 1Q} |
| 43 | 40 | breq1i 4055 | . . . . . . . . . . . . . . . . 17 ⊢ ((*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢 ↔ 1Q <Q 𝑢) |
| 44 | 43 | abbii 2322 | . . . . . . . . . . . . . . . 16 ⊢ {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢} |
| 45 | 42, 44 | opeq12i 3827 | . . . . . . . . . . . . . . 15 ⊢ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 |
| 46 | df-i1p 7593 | . . . . . . . . . . . . . . 15 ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | |
| 47 | 45, 46 | eqtr4i 2230 | . . . . . . . . . . . . . 14 ⊢ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 = 1P |
| 48 | 47 | oveq1i 5964 | . . . . . . . . . . . . 13 ⊢ (〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P) = (1P +P 1P) |
| 49 | 48 | opeq1i 3825 | . . . . . . . . . . . 12 ⊢ 〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(1P +P 1P), 1P〉 |
| 50 | eceq1 6665 | . . . . . . . . . . . 12 ⊢ (〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉 = 〈(1P +P 1P), 1P〉 → [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(1P +P 1P), 1P〉] ~R ) | |
| 51 | 49, 50 | ax-mp 5 | . . . . . . . . . . 11 ⊢ [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = [〈(1P +P 1P), 1P〉] ~R |
| 52 | df-1r 7858 | . . . . . . . . . . 11 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 53 | 51, 52 | eqtr4i 2230 | . . . . . . . . . 10 ⊢ [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R = 1R |
| 54 | 53 | oveq2i 5965 | . . . . . . . . 9 ⊢ ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) = ((𝐹‘𝑚) +R 1R) |
| 55 | 54 | breq2i 4056 | . . . . . . . 8 ⊢ ((𝐹‘1o) <R ((𝐹‘𝑚) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈1o, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈1o, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ↔ (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 56 | 36, 55 | imbitrdi 161 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R))) |
| 57 | 56 | imp 124 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o <N 𝑚) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 58 | 1 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 𝐹:N⟶R) |
| 59 | 23 | a1i 9 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1o ∈ N) |
| 60 | 58, 59 | ffvelcdmd 5726 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) ∈ R) |
| 61 | ltadd1sr 7902 | . . . . . . . . 9 ⊢ ((𝐹‘1o) ∈ R → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) | |
| 62 | 60, 61 | syl 14 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) |
| 63 | 62 | adantr 276 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R)) |
| 64 | fveq2 5586 | . . . . . . . . 9 ⊢ (1o = 𝑚 → (𝐹‘1o) = (𝐹‘𝑚)) | |
| 65 | 64 | oveq1d 5969 | . . . . . . . 8 ⊢ (1o = 𝑚 → ((𝐹‘1o) +R 1R) = ((𝐹‘𝑚) +R 1R)) |
| 66 | 65 | adantl 277 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → ((𝐹‘1o) +R 1R) = ((𝐹‘𝑚) +R 1R)) |
| 67 | 63, 66 | breqtrd 4074 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 68 | nlt1pig 7467 | . . . . . . . . 9 ⊢ (𝑚 ∈ N → ¬ 𝑚 <N 1o) | |
| 69 | 68 | adantl 277 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ¬ 𝑚 <N 1o) |
| 70 | 69 | pm2.21d 620 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝑚 <N 1o → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R))) |
| 71 | 70 | imp 124 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ 𝑚 <N 1o) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 72 | pitri3or 7448 | . . . . . . . 8 ⊢ ((1o ∈ N ∧ 𝑚 ∈ N) → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) | |
| 73 | 23, 72 | mpan 424 | . . . . . . 7 ⊢ (𝑚 ∈ N → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) |
| 74 | 73 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1o <N 𝑚 ∨ 1o = 𝑚 ∨ 𝑚 <N 1o)) |
| 75 | 57, 67, 71, 74 | mpjao3dan 1320 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘1o) <R ((𝐹‘𝑚) +R 1R)) |
| 76 | ltasrg 7896 | . . . . . . 7 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) | |
| 77 | 76 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R)) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) |
| 78 | 1 | ffvelcdmda 5725 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘𝑚) ∈ R) |
| 79 | 1sr 7877 | . . . . . . 7 ⊢ 1R ∈ R | |
| 80 | addclsr 7879 | . . . . . . 7 ⊢ (((𝐹‘𝑚) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝑚) +R 1R) ∈ R) | |
| 81 | 78, 79, 80 | sylancl 413 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R 1R) ∈ R) |
| 82 | m1r 7878 | . . . . . . 7 ⊢ -1R ∈ R | |
| 83 | 82 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → -1R ∈ R) |
| 84 | addcomsrg 7881 | . . . . . . 7 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) | |
| 85 | 84 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) |
| 86 | 77, 60, 81, 83, 85 | caovord2d 6126 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) <R ((𝐹‘𝑚) +R 1R) ↔ ((𝐹‘1o) +R -1R) <R (((𝐹‘𝑚) +R 1R) +R -1R))) |
| 87 | 75, 86 | mpbid 147 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) +R -1R) <R (((𝐹‘𝑚) +R 1R) +R -1R)) |
| 88 | 79 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1R ∈ R) |
| 89 | addasssrg 7882 | . . . . . 6 ⊢ (((𝐹‘𝑚) ∈ R ∧ 1R ∈ R ∧ -1R ∈ R) → (((𝐹‘𝑚) +R 1R) +R -1R) = ((𝐹‘𝑚) +R (1R +R -1R))) | |
| 90 | 78, 88, 83, 89 | syl3anc 1250 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (((𝐹‘𝑚) +R 1R) +R -1R) = ((𝐹‘𝑚) +R (1R +R -1R))) |
| 91 | addcomsrg 7881 | . . . . . . . . 9 ⊢ ((1R ∈ R ∧ -1R ∈ R) → (1R +R -1R) = (-1R +R 1R)) | |
| 92 | 79, 82, 91 | mp2an 426 | . . . . . . . 8 ⊢ (1R +R -1R) = (-1R +R 1R) |
| 93 | m1p1sr 7886 | . . . . . . . 8 ⊢ (-1R +R 1R) = 0R | |
| 94 | 92, 93 | eqtri 2227 | . . . . . . 7 ⊢ (1R +R -1R) = 0R |
| 95 | 94 | oveq2i 5965 | . . . . . 6 ⊢ ((𝐹‘𝑚) +R (1R +R -1R)) = ((𝐹‘𝑚) +R 0R) |
| 96 | 0idsr 7893 | . . . . . . 7 ⊢ ((𝐹‘𝑚) ∈ R → ((𝐹‘𝑚) +R 0R) = (𝐹‘𝑚)) | |
| 97 | 78, 96 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R 0R) = (𝐹‘𝑚)) |
| 98 | 95, 97 | eqtrid 2251 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘𝑚) +R (1R +R -1R)) = (𝐹‘𝑚)) |
| 99 | 90, 98 | eqtrd 2239 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (((𝐹‘𝑚) +R 1R) +R -1R) = (𝐹‘𝑚)) |
| 100 | 87, 99 | breqtrd 4074 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐹‘1o) +R -1R) <R (𝐹‘𝑚)) |
| 101 | 100 | ralrimiva 2580 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N ((𝐹‘1o) +R -1R) <R (𝐹‘𝑚)) |
| 102 | 1, 2, 101 | caucvgsrlembnd 7927 | 1 ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 980 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∃wrex 2486 〈cop 3638 class class class wbr 4048 ⟶wf 5273 ‘cfv 5277 (class class class)co 5954 1oc1o 6505 [cec 6628 Ncnpi 7398 <N clti 7401 ~Q ceq 7405 1Qc1q 7407 *Qcrq 7410 <Q cltq 7411 1Pc1p 7418 +P cpp 7419 ~R cer 7422 Rcnr 7423 0Rc0r 7424 1Rc1r 7425 -1Rcm1r 7426 +R cplr 7427 <R cltr 7429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-2o 6513 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-pli 7431 df-mi 7432 df-lti 7433 df-plpq 7470 df-mpq 7471 df-enq 7473 df-nqqs 7474 df-plqqs 7475 df-mqqs 7476 df-1nqqs 7477 df-rq 7478 df-ltnqqs 7479 df-enq0 7550 df-nq0 7551 df-0nq0 7552 df-plq0 7553 df-mq0 7554 df-inp 7592 df-i1p 7593 df-iplp 7594 df-imp 7595 df-iltp 7596 df-enr 7852 df-nr 7853 df-plr 7854 df-mr 7855 df-ltr 7856 df-0r 7857 df-1r 7858 df-m1r 7859 |
| This theorem is referenced by: axcaucvglemres 8025 |
| Copyright terms: Public domain | W3C validator |