ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsr GIF version

Theorem caucvgsr 7743
Description: A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7653 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7742).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7738).

3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7653 to get a limit (see caucvgsrlemgt1 7736).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7736).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7741). (Contributed by Jim Kingdon, 20-Jun-2021.)

Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
Assertion
Ref Expression
caucvgsr (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑙,𝑢   𝑛,𝐹,𝑘,𝑙,𝑢   𝑥,𝐹,𝑦,𝑗,𝑘   𝜑,𝑗,𝑘,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑙)

Proof of Theorem caucvgsr
Dummy variables 𝑓 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . 2 (𝜑𝐹:NR)
2 caucvgsr.cau . 2 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3 breq1 3985 . . . . . . . . . . . . 13 (𝑛 = 1o → (𝑛 <N 𝑘 ↔ 1o <N 𝑘))
4 fveq2 5486 . . . . . . . . . . . . . . 15 (𝑛 = 1o → (𝐹𝑛) = (𝐹‘1o))
5 opeq1 3758 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 1o → ⟨𝑛, 1o⟩ = ⟨1o, 1o⟩)
65eceq1d 6537 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 1o → [⟨𝑛, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
76fveq2d 5490 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 1o → (*Q‘[⟨𝑛, 1o⟩] ~Q ) = (*Q‘[⟨1o, 1o⟩] ~Q ))
87breq2d 3994 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1o → (𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )))
98abbidv 2284 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1o → {𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )})
107breq1d 3992 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1o → ((*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢))
1110abbidv 2284 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1o → {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢})
129, 11opeq12d 3766 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1o → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩)
1312oveq1d 5857 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1o → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P))
1413opeq1d 3764 . . . . . . . . . . . . . . . . 17 (𝑛 = 1o → ⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩)
1514eceq1d 6537 . . . . . . . . . . . . . . . 16 (𝑛 = 1o → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1615oveq2d 5858 . . . . . . . . . . . . . . 15 (𝑛 = 1o → ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
174, 16breq12d 3995 . . . . . . . . . . . . . 14 (𝑛 = 1o → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
184, 15oveq12d 5860 . . . . . . . . . . . . . . 15 (𝑛 = 1o → ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
1918breq2d 3994 . . . . . . . . . . . . . 14 (𝑛 = 1o → ((𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
2017, 19anbi12d 465 . . . . . . . . . . . . 13 (𝑛 = 1o → (((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) ↔ ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
213, 20imbi12d 233 . . . . . . . . . . . 12 (𝑛 = 1o → ((𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) ↔ (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))))
2221ralbidv 2466 . . . . . . . . . . 11 (𝑛 = 1o → (∀𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) ↔ ∀𝑘N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))))
23 1pi 7256 . . . . . . . . . . . 12 1oN
2423a1i 9 . . . . . . . . . . 11 (𝜑 → 1oN)
2522, 2, 24rspcdva 2835 . . . . . . . . . 10 (𝜑 → ∀𝑘N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
26 simpl 108 . . . . . . . . . . . 12 (((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
2726imim2i 12 . . . . . . . . . . 11 ((1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) → (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
2827ralimi 2529 . . . . . . . . . 10 (∀𝑘N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) → ∀𝑘N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
2925, 28syl 14 . . . . . . . . 9 (𝜑 → ∀𝑘N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
30 breq2 3986 . . . . . . . . . . 11 (𝑘 = 𝑚 → (1o <N 𝑘 ↔ 1o <N 𝑚))
31 fveq2 5486 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3231oveq1d 5857 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
3332breq2d 3994 . . . . . . . . . . 11 (𝑘 = 𝑚 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
3430, 33imbi12d 233 . . . . . . . . . 10 (𝑘 = 𝑚 → ((1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) ↔ (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3534rspcv 2826 . . . . . . . . 9 (𝑚N → (∀𝑘N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3629, 35mpan9 279 . . . . . . . 8 ((𝜑𝑚N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
37 df-1nqqs 7292 . . . . . . . . . . . . . . . . . . . 20 1Q = [⟨1o, 1o⟩] ~Q
3837fveq2i 5489 . . . . . . . . . . . . . . . . . . 19 (*Q‘1Q) = (*Q‘[⟨1o, 1o⟩] ~Q )
39 rec1nq 7336 . . . . . . . . . . . . . . . . . . 19 (*Q‘1Q) = 1Q
4038, 39eqtr3i 2188 . . . . . . . . . . . . . . . . . 18 (*Q‘[⟨1o, 1o⟩] ~Q ) = 1Q
4140breq2i 3990 . . . . . . . . . . . . . . . . 17 (𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q ) ↔ 𝑙 <Q 1Q)
4241abbii 2282 . . . . . . . . . . . . . . . 16 {𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )} = {𝑙𝑙 <Q 1Q}
4340breq1i 3989 . . . . . . . . . . . . . . . . 17 ((*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢 ↔ 1Q <Q 𝑢)
4443abbii 2282 . . . . . . . . . . . . . . . 16 {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢}
4542, 44opeq12i 3763 . . . . . . . . . . . . . . 15 ⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
46 df-i1p 7408 . . . . . . . . . . . . . . 15 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
4745, 46eqtr4i 2189 . . . . . . . . . . . . . 14 ⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ = 1P
4847oveq1i 5852 . . . . . . . . . . . . 13 (⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) = (1P +P 1P)
4948opeq1i 3761 . . . . . . . . . . . 12 ⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(1P +P 1P), 1P
50 eceq1 6536 . . . . . . . . . . . 12 (⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(1P +P 1P), 1P⟩ → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R )
5149, 50ax-mp 5 . . . . . . . . . . 11 [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R
52 df-1r 7673 . . . . . . . . . . 11 1R = [⟨(1P +P 1P), 1P⟩] ~R
5351, 52eqtr4i 2189 . . . . . . . . . 10 [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = 1R
5453oveq2i 5853 . . . . . . . . 9 ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹𝑚) +R 1R)
5554breq2i 3990 . . . . . . . 8 ((𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
5636, 55syl6ib 160 . . . . . . 7 ((𝜑𝑚N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R 1R)))
5756imp 123 . . . . . 6 (((𝜑𝑚N) ∧ 1o <N 𝑚) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
581adantr 274 . . . . . . . . . 10 ((𝜑𝑚N) → 𝐹:NR)
5923a1i 9 . . . . . . . . . 10 ((𝜑𝑚N) → 1oN)
6058, 59ffvelrnd 5621 . . . . . . . . 9 ((𝜑𝑚N) → (𝐹‘1o) ∈ R)
61 ltadd1sr 7717 . . . . . . . . 9 ((𝐹‘1o) ∈ R → (𝐹‘1o) <R ((𝐹‘1o) +R 1R))
6260, 61syl 14 . . . . . . . 8 ((𝜑𝑚N) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R))
6362adantr 274 . . . . . . 7 (((𝜑𝑚N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R))
64 fveq2 5486 . . . . . . . . 9 (1o = 𝑚 → (𝐹‘1o) = (𝐹𝑚))
6564oveq1d 5857 . . . . . . . 8 (1o = 𝑚 → ((𝐹‘1o) +R 1R) = ((𝐹𝑚) +R 1R))
6665adantl 275 . . . . . . 7 (((𝜑𝑚N) ∧ 1o = 𝑚) → ((𝐹‘1o) +R 1R) = ((𝐹𝑚) +R 1R))
6763, 66breqtrd 4008 . . . . . 6 (((𝜑𝑚N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
68 nlt1pig 7282 . . . . . . . . 9 (𝑚N → ¬ 𝑚 <N 1o)
6968adantl 275 . . . . . . . 8 ((𝜑𝑚N) → ¬ 𝑚 <N 1o)
7069pm2.21d 609 . . . . . . 7 ((𝜑𝑚N) → (𝑚 <N 1o → (𝐹‘1o) <R ((𝐹𝑚) +R 1R)))
7170imp 123 . . . . . 6 (((𝜑𝑚N) ∧ 𝑚 <N 1o) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
72 pitri3or 7263 . . . . . . . 8 ((1oN𝑚N) → (1o <N 𝑚 ∨ 1o = 𝑚𝑚 <N 1o))
7323, 72mpan 421 . . . . . . 7 (𝑚N → (1o <N 𝑚 ∨ 1o = 𝑚𝑚 <N 1o))
7473adantl 275 . . . . . 6 ((𝜑𝑚N) → (1o <N 𝑚 ∨ 1o = 𝑚𝑚 <N 1o))
7557, 67, 71, 74mpjao3dan 1297 . . . . 5 ((𝜑𝑚N) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
76 ltasrg 7711 . . . . . . 7 ((𝑓R𝑔RR) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
7776adantl 275 . . . . . 6 (((𝜑𝑚N) ∧ (𝑓R𝑔RR)) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
781ffvelrnda 5620 . . . . . . 7 ((𝜑𝑚N) → (𝐹𝑚) ∈ R)
79 1sr 7692 . . . . . . 7 1RR
80 addclsr 7694 . . . . . . 7 (((𝐹𝑚) ∈ R ∧ 1RR) → ((𝐹𝑚) +R 1R) ∈ R)
8178, 79, 80sylancl 410 . . . . . 6 ((𝜑𝑚N) → ((𝐹𝑚) +R 1R) ∈ R)
82 m1r 7693 . . . . . . 7 -1RR
8382a1i 9 . . . . . 6 ((𝜑𝑚N) → -1RR)
84 addcomsrg 7696 . . . . . . 7 ((𝑓R𝑔R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
8584adantl 275 . . . . . 6 (((𝜑𝑚N) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
8677, 60, 81, 83, 85caovord2d 6011 . . . . 5 ((𝜑𝑚N) → ((𝐹‘1o) <R ((𝐹𝑚) +R 1R) ↔ ((𝐹‘1o) +R -1R) <R (((𝐹𝑚) +R 1R) +R -1R)))
8775, 86mpbid 146 . . . 4 ((𝜑𝑚N) → ((𝐹‘1o) +R -1R) <R (((𝐹𝑚) +R 1R) +R -1R))
8879a1i 9 . . . . . 6 ((𝜑𝑚N) → 1RR)
89 addasssrg 7697 . . . . . 6 (((𝐹𝑚) ∈ R ∧ 1RR ∧ -1RR) → (((𝐹𝑚) +R 1R) +R -1R) = ((𝐹𝑚) +R (1R +R -1R)))
9078, 88, 83, 89syl3anc 1228 . . . . 5 ((𝜑𝑚N) → (((𝐹𝑚) +R 1R) +R -1R) = ((𝐹𝑚) +R (1R +R -1R)))
91 addcomsrg 7696 . . . . . . . . 9 ((1RR ∧ -1RR) → (1R +R -1R) = (-1R +R 1R))
9279, 82, 91mp2an 423 . . . . . . . 8 (1R +R -1R) = (-1R +R 1R)
93 m1p1sr 7701 . . . . . . . 8 (-1R +R 1R) = 0R
9492, 93eqtri 2186 . . . . . . 7 (1R +R -1R) = 0R
9594oveq2i 5853 . . . . . 6 ((𝐹𝑚) +R (1R +R -1R)) = ((𝐹𝑚) +R 0R)
96 0idsr 7708 . . . . . . 7 ((𝐹𝑚) ∈ R → ((𝐹𝑚) +R 0R) = (𝐹𝑚))
9778, 96syl 14 . . . . . 6 ((𝜑𝑚N) → ((𝐹𝑚) +R 0R) = (𝐹𝑚))
9895, 97syl5eq 2211 . . . . 5 ((𝜑𝑚N) → ((𝐹𝑚) +R (1R +R -1R)) = (𝐹𝑚))
9990, 98eqtrd 2198 . . . 4 ((𝜑𝑚N) → (((𝐹𝑚) +R 1R) +R -1R) = (𝐹𝑚))
10087, 99breqtrd 4008 . . 3 ((𝜑𝑚N) → ((𝐹‘1o) +R -1R) <R (𝐹𝑚))
101100ralrimiva 2539 . 2 (𝜑 → ∀𝑚N ((𝐹‘1o) +R -1R) <R (𝐹𝑚))
1021, 2, 101caucvgsrlembnd 7742 1 (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 967  w3a 968   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  cop 3579   class class class wbr 3982  wf 5184  cfv 5188  (class class class)co 5842  1oc1o 6377  [cec 6499  Ncnpi 7213   <N clti 7216   ~Q ceq 7220  1Qc1q 7222  *Qcrq 7225   <Q cltq 7226  1Pc1p 7233   +P cpp 7234   ~R cer 7237  Rcnr 7238  0Rc0r 7239  1Rc1r 7240  -1Rcm1r 7241   +R cplr 7242   <R cltr 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-iltp 7411  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-ltr 7671  df-0r 7672  df-1r 7673  df-m1r 7674
This theorem is referenced by:  axcaucvglemres  7840
  Copyright terms: Public domain W3C validator