ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem1 GIF version

Theorem pitonnlem1 7957
Description: Lemma for pitonn 7960. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem1 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
Distinct variable group:   𝑢,𝑙

Proof of Theorem pitonnlem1
StepHypRef Expression
1 df-1 7932 . 2 1 = ⟨1R, 0R
2 df-1r 7844 . . . 4 1R = [⟨(1P +P 1P), 1P⟩] ~R
3 df-i1p 7579 . . . . . . . 8 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
4 df-1nqqs 7463 . . . . . . . . . . 11 1Q = [⟨1o, 1o⟩] ~Q
54breq2i 4051 . . . . . . . . . 10 (𝑙 <Q 1Q𝑙 <Q [⟨1o, 1o⟩] ~Q )
65abbii 2320 . . . . . . . . 9 {𝑙𝑙 <Q 1Q} = {𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }
74breq1i 4050 . . . . . . . . . 10 (1Q <Q 𝑢 ↔ [⟨1o, 1o⟩] ~Q <Q 𝑢)
87abbii 2320 . . . . . . . . 9 {𝑢 ∣ 1Q <Q 𝑢} = {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}
96, 8opeq12i 3823 . . . . . . . 8 ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩
103, 9eqtri 2225 . . . . . . 7 1P = ⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩
1110oveq1i 5953 . . . . . 6 (1P +P 1P) = (⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)
1211opeq1i 3821 . . . . 5 ⟨(1P +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P
13 eceq1 6654 . . . . 5 (⟨(1P +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ → [⟨(1P +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1412, 13ax-mp 5 . . . 4 [⟨(1P +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R
152, 14eqtri 2225 . . 3 1R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R
1615opeq1i 3821 . 2 ⟨1R, 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R
171, 16eqtr2i 2226 1 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
Colors of variables: wff set class
Syntax hints:   = wceq 1372  {cab 2190  cop 3635   class class class wbr 4043  (class class class)co 5943  1oc1o 6494  [cec 6617   ~Q ceq 7391  1Qc1q 7393   <Q cltq 7397  1Pc1p 7404   +P cpp 7405   ~R cer 7408  0Rc0r 7410  1Rc1r 7411  1c1 7925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fv 5278  df-ov 5946  df-ec 6621  df-1nqqs 7463  df-i1p 7579  df-1r 7844  df-1 7932
This theorem is referenced by:  pitonn  7960
  Copyright terms: Public domain W3C validator