ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem1 GIF version

Theorem pitonnlem1 8028
Description: Lemma for pitonn 8031. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem1 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
Distinct variable group:   𝑢,𝑙

Proof of Theorem pitonnlem1
StepHypRef Expression
1 df-1 8003 . 2 1 = ⟨1R, 0R
2 df-1r 7915 . . . 4 1R = [⟨(1P +P 1P), 1P⟩] ~R
3 df-i1p 7650 . . . . . . . 8 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
4 df-1nqqs 7534 . . . . . . . . . . 11 1Q = [⟨1o, 1o⟩] ~Q
54breq2i 4090 . . . . . . . . . 10 (𝑙 <Q 1Q𝑙 <Q [⟨1o, 1o⟩] ~Q )
65abbii 2345 . . . . . . . . 9 {𝑙𝑙 <Q 1Q} = {𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }
74breq1i 4089 . . . . . . . . . 10 (1Q <Q 𝑢 ↔ [⟨1o, 1o⟩] ~Q <Q 𝑢)
87abbii 2345 . . . . . . . . 9 {𝑢 ∣ 1Q <Q 𝑢} = {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}
96, 8opeq12i 3861 . . . . . . . 8 ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩
103, 9eqtri 2250 . . . . . . 7 1P = ⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩
1110oveq1i 6010 . . . . . 6 (1P +P 1P) = (⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)
1211opeq1i 3859 . . . . 5 ⟨(1P +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P
13 eceq1 6713 . . . . 5 (⟨(1P +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ → [⟨(1P +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1412, 13ax-mp 5 . . . 4 [⟨(1P +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R
152, 14eqtri 2250 . . 3 1R = [⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R
1615opeq1i 3859 . 2 ⟨1R, 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R
171, 16eqtr2i 2251 1 ⟨[⟨(⟨{𝑙𝑙 <Q [⟨1o, 1o⟩] ~Q }, {𝑢 ∣ [⟨1o, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
Colors of variables: wff set class
Syntax hints:   = wceq 1395  {cab 2215  cop 3669   class class class wbr 4082  (class class class)co 6000  1oc1o 6553  [cec 6676   ~Q ceq 7462  1Qc1q 7464   <Q cltq 7468  1Pc1p 7475   +P cpp 7476   ~R cer 7479  0Rc0r 7481  1Rc1r 7482  1c1 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fv 5325  df-ov 6003  df-ec 6680  df-1nqqs 7534  df-i1p 7650  df-1r 7915  df-1 8003
This theorem is referenced by:  pitonn  8031
  Copyright terms: Public domain W3C validator