ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2strstr1g GIF version

Theorem 2strstr1g 11989
Description: A constructed two-slot structure. Version of 2strstrg 11986 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
Hypotheses
Ref Expression
2str1.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}
2str1.b (Base‘ndx) < 𝑁
2str1.n 𝑁 ∈ ℕ
Assertion
Ref Expression
2strstr1g ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)

Proof of Theorem 2strstr1g
StepHypRef Expression
1 2str1.g . . . 4 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}
2 eqid 2117 . . . . . . . 8 Slot 𝑁 = Slot 𝑁
3 2str1.n . . . . . . . 8 𝑁 ∈ ℕ
42, 3ndxarg 11909 . . . . . . 7 (Slot 𝑁‘ndx) = 𝑁
54eqcomi 2121 . . . . . 6 𝑁 = (Slot 𝑁‘ndx)
65opeq1i 3678 . . . . 5 𝑁, + ⟩ = ⟨(Slot 𝑁‘ndx), +
76preq2i 3574 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Slot 𝑁‘ndx), + ⟩}
81, 7eqtri 2138 . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Slot 𝑁‘ndx), + ⟩}
9 basendx 11940 . . . 4 (Base‘ndx) = 1
10 2str1.b . . . 4 (Base‘ndx) < 𝑁
119, 10eqbrtrri 3921 . . 3 1 < 𝑁
128, 2, 11, 32strstrg 11986 . 2 ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 𝑁⟩)
139opeq1i 3678 . 2 ⟨(Base‘ndx), 𝑁⟩ = ⟨1, 𝑁
1412, 13breqtrrdi 3940 1 ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465  {cpr 3498  cop 3500   class class class wbr 3899  cfv 5093  1c1 7589   < clt 7768  cn 8688   Struct cstr 11882  ndxcnx 11883  Slot cslot 11885  Basecbs 11886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-fz 9759  df-struct 11888  df-ndx 11889  df-slot 11890  df-base 11892
This theorem is referenced by:  2strbas1g  11990  2strop1g  11991
  Copyright terms: Public domain W3C validator