Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2strstr1g | GIF version |
Description: A constructed two-slot structure. Version of 2strstrg 12457 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.) |
Ref | Expression |
---|---|
2str1.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} |
2str1.b | ⊢ (Base‘ndx) < 𝑁 |
2str1.n | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
2strstr1g | ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2str1.g | . . . 4 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} | |
2 | eqid 2164 | . . . . . . . 8 ⊢ Slot 𝑁 = Slot 𝑁 | |
3 | 2str1.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
4 | 2, 3 | ndxarg 12380 | . . . . . . 7 ⊢ (Slot 𝑁‘ndx) = 𝑁 |
5 | 4 | eqcomi 2168 | . . . . . 6 ⊢ 𝑁 = (Slot 𝑁‘ndx) |
6 | 5 | opeq1i 3756 | . . . . 5 ⊢ 〈𝑁, + 〉 = 〈(Slot 𝑁‘ndx), + 〉 |
7 | 6 | preq2i 3652 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} = {〈(Base‘ndx), 𝐵〉, 〈(Slot 𝑁‘ndx), + 〉} |
8 | 1, 7 | eqtri 2185 | . . 3 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(Slot 𝑁‘ndx), + 〉} |
9 | basendx 12411 | . . . 4 ⊢ (Base‘ndx) = 1 | |
10 | 2str1.b | . . . 4 ⊢ (Base‘ndx) < 𝑁 | |
11 | 9, 10 | eqbrtrri 4000 | . . 3 ⊢ 1 < 𝑁 |
12 | 8, 2, 11, 3 | 2strstrg 12457 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 𝑁〉) |
13 | 9 | opeq1i 3756 | . 2 ⊢ 〈(Base‘ndx), 𝑁〉 = 〈1, 𝑁〉 |
14 | 12, 13 | breqtrrdi 4019 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1342 ∈ wcel 2135 {cpr 3572 〈cop 3574 class class class wbr 3977 ‘cfv 5183 1c1 7746 < clt 7925 ℕcn 8849 Struct cstr 12353 ndxcnx 12354 Slot cslot 12356 Basecbs 12357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-addass 7847 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-0id 7853 ax-rnegex 7854 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-inn 8850 df-n0 9107 df-z 9184 df-uz 9459 df-fz 9937 df-struct 12359 df-ndx 12360 df-slot 12361 df-base 12363 |
This theorem is referenced by: 2strbas1g 12461 2strop1g 12462 |
Copyright terms: Public domain | W3C validator |