ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2strstr1g GIF version

Theorem 2strstr1g 12809
Description: A constructed two-slot structure. Version of 2strstrg 12806 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
Hypotheses
Ref Expression
2str1.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}
2str1.b (Base‘ndx) < 𝑁
2str1.n 𝑁 ∈ ℕ
Assertion
Ref Expression
2strstr1g ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)

Proof of Theorem 2strstr1g
StepHypRef Expression
1 2str1.g . . . 4 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}
2 eqid 2196 . . . . . . . 8 Slot 𝑁 = Slot 𝑁
3 2str1.n . . . . . . . 8 𝑁 ∈ ℕ
42, 3ndxarg 12711 . . . . . . 7 (Slot 𝑁‘ndx) = 𝑁
54eqcomi 2200 . . . . . 6 𝑁 = (Slot 𝑁‘ndx)
65opeq1i 3812 . . . . 5 𝑁, + ⟩ = ⟨(Slot 𝑁‘ndx), +
76preq2i 3704 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Slot 𝑁‘ndx), + ⟩}
81, 7eqtri 2217 . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Slot 𝑁‘ndx), + ⟩}
9 basendx 12743 . . . 4 (Base‘ndx) = 1
10 2str1.b . . . 4 (Base‘ndx) < 𝑁
119, 10eqbrtrri 4057 . . 3 1 < 𝑁
128, 2, 11, 32strstrg 12806 . 2 ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 𝑁⟩)
139opeq1i 3812 . 2 ⟨(Base‘ndx), 𝑁⟩ = ⟨1, 𝑁
1412, 13breqtrrdi 4076 1 ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {cpr 3624  cop 3626   class class class wbr 4034  cfv 5259  1c1 7882   < clt 8063  cn 8992   Struct cstr 12684  ndxcnx 12685  Slot cslot 12687  Basecbs 12688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-inn 8993  df-n0 9252  df-z 9329  df-uz 9604  df-fz 10086  df-struct 12690  df-ndx 12691  df-slot 12692  df-base 12694
This theorem is referenced by:  2strbas1g  12810  2strop1g  12811
  Copyright terms: Public domain W3C validator