| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2strstr1g | GIF version | ||
| Description: A constructed two-slot structure. Version of 2strstrg 12796 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.) | 
| Ref | Expression | 
|---|---|
| 2str1.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} | 
| 2str1.b | ⊢ (Base‘ndx) < 𝑁 | 
| 2str1.n | ⊢ 𝑁 ∈ ℕ | 
| Ref | Expression | 
|---|---|
| 2strstr1g | ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2str1.g | . . . 4 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} | |
| 2 | eqid 2196 | . . . . . . . 8 ⊢ Slot 𝑁 = Slot 𝑁 | |
| 3 | 2str1.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
| 4 | 2, 3 | ndxarg 12701 | . . . . . . 7 ⊢ (Slot 𝑁‘ndx) = 𝑁 | 
| 5 | 4 | eqcomi 2200 | . . . . . 6 ⊢ 𝑁 = (Slot 𝑁‘ndx) | 
| 6 | 5 | opeq1i 3811 | . . . . 5 ⊢ 〈𝑁, + 〉 = 〈(Slot 𝑁‘ndx), + 〉 | 
| 7 | 6 | preq2i 3703 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} = {〈(Base‘ndx), 𝐵〉, 〈(Slot 𝑁‘ndx), + 〉} | 
| 8 | 1, 7 | eqtri 2217 | . . 3 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(Slot 𝑁‘ndx), + 〉} | 
| 9 | basendx 12733 | . . . 4 ⊢ (Base‘ndx) = 1 | |
| 10 | 2str1.b | . . . 4 ⊢ (Base‘ndx) < 𝑁 | |
| 11 | 9, 10 | eqbrtrri 4056 | . . 3 ⊢ 1 < 𝑁 | 
| 12 | 8, 2, 11, 3 | 2strstrg 12796 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 𝑁〉) | 
| 13 | 9 | opeq1i 3811 | . 2 ⊢ 〈(Base‘ndx), 𝑁〉 = 〈1, 𝑁〉 | 
| 14 | 12, 13 | breqtrrdi 4075 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cpr 3623 〈cop 3625 class class class wbr 4033 ‘cfv 5258 1c1 7880 < clt 8061 ℕcn 8990 Struct cstr 12674 ndxcnx 12675 Slot cslot 12677 Basecbs 12678 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 | 
| This theorem is referenced by: 2strbas1g 12800 2strop1g 12801 | 
| Copyright terms: Public domain | W3C validator |