Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elvvuni | GIF version |
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
elvvuni | ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 4682 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
2 | vex 2738 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2738 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | uniop 4249 | . . . . 5 ⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} |
5 | 2, 3 | opi2 4227 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ 〈𝑥, 𝑦〉 |
6 | 4, 5 | eqeltri 2248 | . . . 4 ⊢ ∪ 〈𝑥, 𝑦〉 ∈ 〈𝑥, 𝑦〉 |
7 | unieq 3814 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 = ∪ 〈𝑥, 𝑦〉) | |
8 | id 19 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐴 = 〈𝑥, 𝑦〉) | |
9 | 7, 8 | eleq12d 2246 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (∪ 𝐴 ∈ 𝐴 ↔ ∪ 〈𝑥, 𝑦〉 ∈ 〈𝑥, 𝑦〉)) |
10 | 6, 9 | mpbiri 168 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 ∈ 𝐴) |
11 | 10 | exlimivv 1894 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 ∈ 𝐴) |
12 | 1, 11 | sylbi 121 | 1 ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∃wex 1490 ∈ wcel 2146 Vcvv 2735 {cpr 3590 〈cop 3592 ∪ cuni 3805 × cxp 4618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-opab 4060 df-xp 4626 |
This theorem is referenced by: unielxp 6165 |
Copyright terms: Public domain | W3C validator |