Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elvvuni | GIF version |
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
elvvuni | ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 4666 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
2 | vex 2729 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2729 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | uniop 4233 | . . . . 5 ⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} |
5 | 2, 3 | opi2 4211 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ 〈𝑥, 𝑦〉 |
6 | 4, 5 | eqeltri 2239 | . . . 4 ⊢ ∪ 〈𝑥, 𝑦〉 ∈ 〈𝑥, 𝑦〉 |
7 | unieq 3798 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 = ∪ 〈𝑥, 𝑦〉) | |
8 | id 19 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐴 = 〈𝑥, 𝑦〉) | |
9 | 7, 8 | eleq12d 2237 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (∪ 𝐴 ∈ 𝐴 ↔ ∪ 〈𝑥, 𝑦〉 ∈ 〈𝑥, 𝑦〉)) |
10 | 6, 9 | mpbiri 167 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 ∈ 𝐴) |
11 | 10 | exlimivv 1884 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 ∈ 𝐴) |
12 | 1, 11 | sylbi 120 | 1 ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 {cpr 3577 〈cop 3579 ∪ cuni 3789 × cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-opab 4044 df-xp 4610 |
This theorem is referenced by: unielxp 6142 |
Copyright terms: Public domain | W3C validator |