ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvuni GIF version

Theorem elvvuni 4782
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
elvvuni (𝐴 ∈ (V × V) → 𝐴𝐴)

Proof of Theorem elvvuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4780 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 2802 . . . . . 6 𝑥 ∈ V
3 vex 2802 . . . . . 6 𝑦 ∈ V
42, 3uniop 4341 . . . . 5 𝑥, 𝑦⟩ = {𝑥, 𝑦}
52, 3opi2 4318 . . . . 5 {𝑥, 𝑦} ∈ ⟨𝑥, 𝑦
64, 5eqeltri 2302 . . . 4 𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦
7 unieq 3896 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
8 id 19 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = ⟨𝑥, 𝑦⟩)
97, 8eleq12d 2300 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → ( 𝐴𝐴𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦⟩))
106, 9mpbiri 168 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴𝐴)
1110exlimivv 1943 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴𝐴)
121, 11sylbi 121 1 (𝐴 ∈ (V × V) → 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  {cpr 3667  cop 3669   cuni 3887   × cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-opab 4145  df-xp 4724
This theorem is referenced by:  unielxp  6318
  Copyright terms: Public domain W3C validator