ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvuni GIF version

Theorem elvvuni 4692
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
elvvuni (𝐴 ∈ (V × V) → 𝐴𝐴)

Proof of Theorem elvvuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4690 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 2742 . . . . . 6 𝑥 ∈ V
3 vex 2742 . . . . . 6 𝑦 ∈ V
42, 3uniop 4257 . . . . 5 𝑥, 𝑦⟩ = {𝑥, 𝑦}
52, 3opi2 4235 . . . . 5 {𝑥, 𝑦} ∈ ⟨𝑥, 𝑦
64, 5eqeltri 2250 . . . 4 𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦
7 unieq 3820 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
8 id 19 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = ⟨𝑥, 𝑦⟩)
97, 8eleq12d 2248 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → ( 𝐴𝐴𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦⟩))
106, 9mpbiri 168 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴𝐴)
1110exlimivv 1896 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴𝐴)
121, 11sylbi 121 1 (𝐴 ∈ (V × V) → 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wex 1492  wcel 2148  Vcvv 2739  {cpr 3595  cop 3597   cuni 3811   × cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-opab 4067  df-xp 4634
This theorem is referenced by:  unielxp  6177
  Copyright terms: Public domain W3C validator