![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elvvuni | GIF version |
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
elvvuni | ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 4690 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
2 | vex 2742 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2742 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | uniop 4257 | . . . . 5 ⊢ ∪ ⟨𝑥, 𝑦⟩ = {𝑥, 𝑦} |
5 | 2, 3 | opi2 4235 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ ⟨𝑥, 𝑦⟩ |
6 | 4, 5 | eqeltri 2250 | . . . 4 ⊢ ∪ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦⟩ |
7 | unieq 3820 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∪ 𝐴 = ∪ ⟨𝑥, 𝑦⟩) | |
8 | id 19 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = ⟨𝑥, 𝑦⟩) | |
9 | 7, 8 | eleq12d 2248 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (∪ 𝐴 ∈ 𝐴 ↔ ∪ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦⟩)) |
10 | 6, 9 | mpbiri 168 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∪ 𝐴 ∈ 𝐴) |
11 | 10 | exlimivv 1896 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → ∪ 𝐴 ∈ 𝐴) |
12 | 1, 11 | sylbi 121 | 1 ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 {cpr 3595 ⟨cop 3597 ∪ cuni 3811 × cxp 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-opab 4067 df-xp 4634 |
This theorem is referenced by: unielxp 6177 |
Copyright terms: Public domain | W3C validator |