ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvuni GIF version

Theorem elvvuni 4684
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
elvvuni (𝐴 ∈ (V × V) → 𝐴𝐴)

Proof of Theorem elvvuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4682 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 2738 . . . . . 6 𝑥 ∈ V
3 vex 2738 . . . . . 6 𝑦 ∈ V
42, 3uniop 4249 . . . . 5 𝑥, 𝑦⟩ = {𝑥, 𝑦}
52, 3opi2 4227 . . . . 5 {𝑥, 𝑦} ∈ ⟨𝑥, 𝑦
64, 5eqeltri 2248 . . . 4 𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦
7 unieq 3814 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
8 id 19 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = ⟨𝑥, 𝑦⟩)
97, 8eleq12d 2246 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → ( 𝐴𝐴𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦⟩))
106, 9mpbiri 168 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴𝐴)
1110exlimivv 1894 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴𝐴)
121, 11sylbi 121 1 (𝐴 ∈ (V × V) → 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wex 1490  wcel 2146  Vcvv 2735  {cpr 3590  cop 3592   cuni 3805   × cxp 4618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-opab 4060  df-xp 4626
This theorem is referenced by:  unielxp  6165
  Copyright terms: Public domain W3C validator