![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opthg2 | GIF version |
Description: Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthg2 | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthg 4237 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) | |
2 | eqcom 2179 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉) | |
3 | eqcom 2179 | . . 3 ⊢ (𝐴 = 𝐶 ↔ 𝐶 = 𝐴) | |
4 | eqcom 2179 | . . 3 ⊢ (𝐵 = 𝐷 ↔ 𝐷 = 𝐵) | |
5 | 3, 4 | anbi12i 460 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
6 | 1, 2, 5 | 3bitr4g 223 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 〈cop 3595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 |
This theorem is referenced by: opth2 4239 fliftel 5791 axprecex 7876 |
Copyright terms: Public domain | W3C validator |