ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opthg2 GIF version

Theorem opthg2 4240
Description: Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg2 ((𝐶𝑉𝐷𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem opthg2
StepHypRef Expression
1 opthg 4239 . 2 ((𝐶𝑉𝐷𝑊) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
2 eqcom 2179 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩)
3 eqcom 2179 . . 3 (𝐴 = 𝐶𝐶 = 𝐴)
4 eqcom 2179 . . 3 (𝐵 = 𝐷𝐷 = 𝐵)
53, 4anbi12i 460 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) ↔ (𝐶 = 𝐴𝐷 = 𝐵))
61, 2, 53bitr4g 223 1 ((𝐶𝑉𝐷𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  cop 3596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602
This theorem is referenced by:  opth2  4241  fliftel  5794  axprecex  7879
  Copyright terms: Public domain W3C validator