Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opthg | GIF version |
Description: Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3765 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | eqeq1d 2179 | . . 3 ⊢ (𝑥 = 𝐴 → (〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉)) |
3 | eqeq1 2177 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ↔ 𝐴 = 𝐶)) | |
4 | 3 | anbi1d 462 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐶 ∧ 𝑦 = 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷))) |
5 | 2, 4 | bibi12d 234 | . 2 ⊢ (𝑥 = 𝐴 → ((〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷)))) |
6 | opeq2 3766 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
7 | 6 | eqeq1d 2179 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉)) |
8 | eqeq1 2177 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 = 𝐷 ↔ 𝐵 = 𝐷)) | |
9 | 8 | anbi2d 461 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 = 𝐶 ∧ 𝑦 = 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
10 | 7, 9 | bibi12d 234 | . 2 ⊢ (𝑦 = 𝐵 → ((〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
11 | vex 2733 | . . 3 ⊢ 𝑥 ∈ V | |
12 | vex 2733 | . . 3 ⊢ 𝑦 ∈ V | |
13 | 11, 12 | opth 4222 | . 2 ⊢ (〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) |
14 | 5, 10, 13 | vtocl2g 2794 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 〈cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: opthg2 4224 xpopth 6155 eqop 6156 inl11 7042 preqlu 7434 cauappcvgprlemladd 7620 elrealeu 7791 qnumdenbi 12146 crth 12178 |
Copyright terms: Public domain | W3C validator |