ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opthg GIF version

Theorem opthg 4130
Description: Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem opthg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3675 . . . 4 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
21eqeq1d 2126 . . 3 (𝑥 = 𝐴 → (⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩))
3 eqeq1 2124 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐶𝐴 = 𝐶))
43anbi1d 460 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐶𝑦 = 𝐷) ↔ (𝐴 = 𝐶𝑦 = 𝐷)))
52, 4bibi12d 234 . 2 (𝑥 = 𝐴 → ((⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷)) ↔ (⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝑦 = 𝐷))))
6 opeq2 3676 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
76eqeq1d 2126 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩))
8 eqeq1 2124 . . . 4 (𝑦 = 𝐵 → (𝑦 = 𝐷𝐵 = 𝐷))
98anbi2d 459 . . 3 (𝑦 = 𝐵 → ((𝐴 = 𝐶𝑦 = 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
107, 9bibi12d 234 . 2 (𝑦 = 𝐵 → ((⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝑦 = 𝐷)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))))
11 vex 2663 . . 3 𝑥 ∈ V
12 vex 2663 . . 3 𝑦 ∈ V
1311, 12opth 4129 . 2 (⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷))
145, 10, 13vtocl2g 2724 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  cop 3500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506
This theorem is referenced by:  opthg2  4131  xpopth  6042  eqop  6043  inl11  6918  preqlu  7248  cauappcvgprlemladd  7434  elrealeu  7605  qnumdenbi  11797  crth  11827
  Copyright terms: Public domain W3C validator