Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fliftel | GIF version |
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftel | ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3990 | . . . 4 ⊢ (𝐶𝐹𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐹) | |
2 | flift.1 | . . . . 5 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
3 | 2 | eleq2i 2237 | . . . 4 ⊢ (〈𝐶, 𝐷〉 ∈ 𝐹 ↔ 〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
4 | 1, 3 | bitri 183 | . . 3 ⊢ (𝐶𝐹𝐷 ↔ 〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
5 | flift.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
6 | flift.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
7 | opexg 4213 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ V) | |
8 | 5, 6, 7 | syl2anc 409 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) |
9 | 8 | ralrimiva 2543 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 〈𝐴, 𝐵〉 ∈ V) |
10 | eqid 2170 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
11 | 10 | elrnmptg 4863 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 〈𝐴, 𝐵〉 ∈ V → (〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉)) |
12 | 9, 11 | syl 14 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉)) |
13 | 4, 12 | syl5bb 191 | . 2 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉)) |
14 | opthg2 4224 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) | |
15 | 5, 6, 14 | syl2anc 409 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
16 | 15 | rexbidva 2467 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
17 | 13, 16 | bitrd 187 | 1 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 Vcvv 2730 〈cop 3586 class class class wbr 3989 ↦ cmpt 4050 ran crn 4612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-mpt 4052 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: fliftcnv 5774 fliftfun 5775 fliftf 5778 fliftval 5779 qliftel 6593 |
Copyright terms: Public domain | W3C validator |