ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftel GIF version

Theorem fliftel 5761
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftel (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑅   𝑥,𝐷   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftel
StepHypRef Expression
1 df-br 3983 . . . 4 (𝐶𝐹𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝐹)
2 flift.1 . . . . 5 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
32eleq2i 2233 . . . 4 (⟨𝐶, 𝐷⟩ ∈ 𝐹 ↔ ⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
41, 3bitri 183 . . 3 (𝐶𝐹𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
5 flift.2 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴𝑅)
6 flift.3 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵𝑆)
7 opexg 4206 . . . . . 6 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ V)
85, 6, 7syl2anc 409 . . . . 5 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
98ralrimiva 2539 . . . 4 (𝜑 → ∀𝑥𝑋𝐴, 𝐵⟩ ∈ V)
10 eqid 2165 . . . . 5 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
1110elrnmptg 4856 . . . 4 (∀𝑥𝑋𝐴, 𝐵⟩ ∈ V → (⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩))
129, 11syl 14 . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩))
134, 12syl5bb 191 . 2 (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩))
14 opthg2 4217 . . . 4 ((𝐴𝑅𝐵𝑆) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
155, 6, 14syl2anc 409 . . 3 ((𝜑𝑥𝑋) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
1615rexbidva 2463 . 2 (𝜑 → (∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
1713, 16bitrd 187 1 (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  wrex 2445  Vcvv 2726  cop 3579   class class class wbr 3982  cmpt 4043  ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  fliftcnv  5763  fliftfun  5764  fliftf  5767  fliftval  5768  qliftel  6581
  Copyright terms: Public domain W3C validator