ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmidlem GIF version

Theorem ordtriexmidlem 4574
Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4576 or weak linearity in ordsoexmid 4617) with a proposition 𝜑. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.)
Assertion
Ref Expression
ordtriexmidlem {𝑥 ∈ {∅} ∣ 𝜑} ∈ On

Proof of Theorem ordtriexmidlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦𝑧)
2 elrabi 2930 . . . . . . . . 9 (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 ∈ {∅})
3 velsn 3654 . . . . . . . . 9 (𝑧 ∈ {∅} ↔ 𝑧 = ∅)
42, 3sylib 122 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 = ∅)
5 noel 3468 . . . . . . . . 9 ¬ 𝑦 ∈ ∅
6 eleq2 2270 . . . . . . . . 9 (𝑧 = ∅ → (𝑦𝑧𝑦 ∈ ∅))
75, 6mtbiri 677 . . . . . . . 8 (𝑧 = ∅ → ¬ 𝑦𝑧)
84, 7syl 14 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ 𝑦𝑧)
98adantl 277 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → ¬ 𝑦𝑧)
101, 9pm2.21dd 621 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑})
1110gen2 1474 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑})
12 dftr2 4151 . . . 4 (Tr {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
1311, 12mpbir 146 . . 3 Tr {𝑥 ∈ {∅} ∣ 𝜑}
14 ssrab2 3282 . . 3 {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅}
15 ord0 4445 . . . . 5 Ord ∅
16 ordsucim 4555 . . . . 5 (Ord ∅ → Ord suc ∅)
1715, 16ax-mp 5 . . . 4 Ord suc ∅
18 suc0 4465 . . . . 5 suc ∅ = {∅}
19 ordeq 4426 . . . . 5 (suc ∅ = {∅} → (Ord suc ∅ ↔ Ord {∅}))
2018, 19ax-mp 5 . . . 4 (Ord suc ∅ ↔ Ord {∅})
2117, 20mpbi 145 . . 3 Ord {∅}
22 trssord 4434 . . 3 ((Tr {𝑥 ∈ {∅} ∣ 𝜑} ∧ {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ Ord {∅}) → Ord {𝑥 ∈ {∅} ∣ 𝜑})
2313, 14, 21, 22mp3an 1350 . 2 Ord {𝑥 ∈ {∅} ∣ 𝜑}
24 p0ex 4239 . . . 4 {∅} ∈ V
2524rabex 4195 . . 3 {𝑥 ∈ {∅} ∣ 𝜑} ∈ V
2625elon 4428 . 2 ({𝑥 ∈ {∅} ∣ 𝜑} ∈ On ↔ Ord {𝑥 ∈ {∅} ∣ 𝜑})
2723, 26mpbir 146 1 {𝑥 ∈ {∅} ∣ 𝜑} ∈ On
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wcel 2177  {crab 2489  wss 3170  c0 3464  {csn 3637  Tr wtr 4149  Ord word 4416  Oncon0 4417  suc csuc 4419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-nul 4177  ax-pow 4225
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-uni 3856  df-tr 4150  df-iord 4420  df-on 4422  df-suc 4425
This theorem is referenced by:  ordtriexmid  4576  ontriexmidim  4577  ordtri2orexmid  4578  ontr2exmid  4580  onsucsssucexmid  4582  ordsoexmid  4617  0elsucexmid  4620  ordpwsucexmid  4625  unfiexmid  7029  exmidonfinlem  7316
  Copyright terms: Public domain W3C validator