| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtriexmidlem | GIF version | ||
| Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4610 or weak linearity in ordsoexmid 4651) with a proposition 𝜑. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.) |
| Ref | Expression |
|---|---|
| ordtriexmidlem | ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ 𝑧) | |
| 2 | elrabi 2956 | . . . . . . . . 9 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 ∈ {∅}) | |
| 3 | velsn 3683 | . . . . . . . . 9 ⊢ (𝑧 ∈ {∅} ↔ 𝑧 = ∅) | |
| 4 | 2, 3 | sylib 122 | . . . . . . . 8 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 = ∅) |
| 5 | noel 3495 | . . . . . . . . 9 ⊢ ¬ 𝑦 ∈ ∅ | |
| 6 | eleq2 2293 | . . . . . . . . 9 ⊢ (𝑧 = ∅ → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ∅)) | |
| 7 | 5, 6 | mtbiri 679 | . . . . . . . 8 ⊢ (𝑧 = ∅ → ¬ 𝑦 ∈ 𝑧) |
| 8 | 4, 7 | syl 14 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ 𝑦 ∈ 𝑧) |
| 9 | 8 | adantl 277 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → ¬ 𝑦 ∈ 𝑧) |
| 10 | 1, 9 | pm2.21dd 623 | . . . . 5 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
| 11 | 10 | gen2 1496 | . . . 4 ⊢ ∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
| 12 | dftr2 4183 | . . . 4 ⊢ (Tr {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑})) | |
| 13 | 11, 12 | mpbir 146 | . . 3 ⊢ Tr {𝑥 ∈ {∅} ∣ 𝜑} |
| 14 | ssrab2 3309 | . . 3 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
| 15 | ord0 4479 | . . . . 5 ⊢ Ord ∅ | |
| 16 | ordsucim 4589 | . . . . 5 ⊢ (Ord ∅ → Ord suc ∅) | |
| 17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ Ord suc ∅ |
| 18 | suc0 4499 | . . . . 5 ⊢ suc ∅ = {∅} | |
| 19 | ordeq 4460 | . . . . 5 ⊢ (suc ∅ = {∅} → (Ord suc ∅ ↔ Ord {∅})) | |
| 20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (Ord suc ∅ ↔ Ord {∅}) |
| 21 | 17, 20 | mpbi 145 | . . 3 ⊢ Ord {∅} |
| 22 | trssord 4468 | . . 3 ⊢ ((Tr {𝑥 ∈ {∅} ∣ 𝜑} ∧ {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ Ord {∅}) → Ord {𝑥 ∈ {∅} ∣ 𝜑}) | |
| 23 | 13, 14, 21, 22 | mp3an 1371 | . 2 ⊢ Ord {𝑥 ∈ {∅} ∣ 𝜑} |
| 24 | p0ex 4271 | . . . 4 ⊢ {∅} ∈ V | |
| 25 | 24 | rabex 4227 | . . 3 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ V |
| 26 | 25 | elon 4462 | . 2 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} ∈ On ↔ Ord {𝑥 ∈ {∅} ∣ 𝜑}) |
| 27 | 23, 26 | mpbir 146 | 1 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 = wceq 1395 ∈ wcel 2200 {crab 2512 ⊆ wss 3197 ∅c0 3491 {csn 3666 Tr wtr 4181 Ord word 4450 Oncon0 4451 suc csuc 4453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-uni 3888 df-tr 4182 df-iord 4454 df-on 4456 df-suc 4459 |
| This theorem is referenced by: ordtriexmid 4610 ontriexmidim 4611 ordtri2orexmid 4612 ontr2exmid 4614 onsucsssucexmid 4616 ordsoexmid 4651 0elsucexmid 4654 ordpwsucexmid 4659 unfiexmid 7068 exmidonfinlem 7359 |
| Copyright terms: Public domain | W3C validator |