ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmidlem GIF version

Theorem ordtriexmidlem 4556
Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4558 or weak linearity in ordsoexmid 4599) with a proposition 𝜑. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.)
Assertion
Ref Expression
ordtriexmidlem {𝑥 ∈ {∅} ∣ 𝜑} ∈ On

Proof of Theorem ordtriexmidlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦𝑧)
2 elrabi 2917 . . . . . . . . 9 (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 ∈ {∅})
3 velsn 3640 . . . . . . . . 9 (𝑧 ∈ {∅} ↔ 𝑧 = ∅)
42, 3sylib 122 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 = ∅)
5 noel 3455 . . . . . . . . 9 ¬ 𝑦 ∈ ∅
6 eleq2 2260 . . . . . . . . 9 (𝑧 = ∅ → (𝑦𝑧𝑦 ∈ ∅))
75, 6mtbiri 676 . . . . . . . 8 (𝑧 = ∅ → ¬ 𝑦𝑧)
84, 7syl 14 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ 𝑦𝑧)
98adantl 277 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → ¬ 𝑦𝑧)
101, 9pm2.21dd 621 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑})
1110gen2 1464 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑})
12 dftr2 4134 . . . 4 (Tr {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
1311, 12mpbir 146 . . 3 Tr {𝑥 ∈ {∅} ∣ 𝜑}
14 ssrab2 3269 . . 3 {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅}
15 ord0 4427 . . . . 5 Ord ∅
16 ordsucim 4537 . . . . 5 (Ord ∅ → Ord suc ∅)
1715, 16ax-mp 5 . . . 4 Ord suc ∅
18 suc0 4447 . . . . 5 suc ∅ = {∅}
19 ordeq 4408 . . . . 5 (suc ∅ = {∅} → (Ord suc ∅ ↔ Ord {∅}))
2018, 19ax-mp 5 . . . 4 (Ord suc ∅ ↔ Ord {∅})
2117, 20mpbi 145 . . 3 Ord {∅}
22 trssord 4416 . . 3 ((Tr {𝑥 ∈ {∅} ∣ 𝜑} ∧ {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ Ord {∅}) → Ord {𝑥 ∈ {∅} ∣ 𝜑})
2313, 14, 21, 22mp3an 1348 . 2 Ord {𝑥 ∈ {∅} ∣ 𝜑}
24 p0ex 4222 . . . 4 {∅} ∈ V
2524rabex 4178 . . 3 {𝑥 ∈ {∅} ∣ 𝜑} ∈ V
2625elon 4410 . 2 ({𝑥 ∈ {∅} ∣ 𝜑} ∈ On ↔ Ord {𝑥 ∈ {∅} ∣ 𝜑})
2723, 26mpbir 146 1 {𝑥 ∈ {∅} ∣ 𝜑} ∈ On
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wcel 2167  {crab 2479  wss 3157  c0 3451  {csn 3623  Tr wtr 4132  Ord word 4398  Oncon0 4399  suc csuc 4401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-uni 3841  df-tr 4133  df-iord 4402  df-on 4404  df-suc 4407
This theorem is referenced by:  ordtriexmid  4558  ontriexmidim  4559  ordtri2orexmid  4560  ontr2exmid  4562  onsucsssucexmid  4564  ordsoexmid  4599  0elsucexmid  4602  ordpwsucexmid  4607  unfiexmid  6988  exmidonfinlem  7272
  Copyright terms: Public domain W3C validator