ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmidlem GIF version

Theorem ordtriexmidlem 4530
Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4532 or weak linearity in ordsoexmid 4573) with a proposition 𝜑. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.)
Assertion
Ref Expression
ordtriexmidlem {𝑥 ∈ {∅} ∣ 𝜑} ∈ On

Proof of Theorem ordtriexmidlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦𝑧)
2 elrabi 2902 . . . . . . . . 9 (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 ∈ {∅})
3 velsn 3621 . . . . . . . . 9 (𝑧 ∈ {∅} ↔ 𝑧 = ∅)
42, 3sylib 122 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 = ∅)
5 noel 3438 . . . . . . . . 9 ¬ 𝑦 ∈ ∅
6 eleq2 2251 . . . . . . . . 9 (𝑧 = ∅ → (𝑦𝑧𝑦 ∈ ∅))
75, 6mtbiri 676 . . . . . . . 8 (𝑧 = ∅ → ¬ 𝑦𝑧)
84, 7syl 14 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ 𝑦𝑧)
98adantl 277 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → ¬ 𝑦𝑧)
101, 9pm2.21dd 621 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑})
1110gen2 1460 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑})
12 dftr2 4115 . . . 4 (Tr {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
1311, 12mpbir 146 . . 3 Tr {𝑥 ∈ {∅} ∣ 𝜑}
14 ssrab2 3252 . . 3 {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅}
15 ord0 4403 . . . . 5 Ord ∅
16 ordsucim 4511 . . . . 5 (Ord ∅ → Ord suc ∅)
1715, 16ax-mp 5 . . . 4 Ord suc ∅
18 suc0 4423 . . . . 5 suc ∅ = {∅}
19 ordeq 4384 . . . . 5 (suc ∅ = {∅} → (Ord suc ∅ ↔ Ord {∅}))
2018, 19ax-mp 5 . . . 4 (Ord suc ∅ ↔ Ord {∅})
2117, 20mpbi 145 . . 3 Ord {∅}
22 trssord 4392 . . 3 ((Tr {𝑥 ∈ {∅} ∣ 𝜑} ∧ {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ Ord {∅}) → Ord {𝑥 ∈ {∅} ∣ 𝜑})
2313, 14, 21, 22mp3an 1347 . 2 Ord {𝑥 ∈ {∅} ∣ 𝜑}
24 p0ex 4200 . . . 4 {∅} ∈ V
2524rabex 4159 . . 3 {𝑥 ∈ {∅} ∣ 𝜑} ∈ V
2625elon 4386 . 2 ({𝑥 ∈ {∅} ∣ 𝜑} ∈ On ↔ Ord {𝑥 ∈ {∅} ∣ 𝜑})
2723, 26mpbir 146 1 {𝑥 ∈ {∅} ∣ 𝜑} ∈ On
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1361   = wceq 1363  wcel 2158  {crab 2469  wss 3141  c0 3434  {csn 3604  Tr wtr 4113  Ord word 4374  Oncon0 4375  suc csuc 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-uni 3822  df-tr 4114  df-iord 4378  df-on 4380  df-suc 4383
This theorem is referenced by:  ordtriexmid  4532  ontriexmidim  4533  ordtri2orexmid  4534  ontr2exmid  4536  onsucsssucexmid  4538  ordsoexmid  4573  0elsucexmid  4576  ordpwsucexmid  4581  unfiexmid  6930  exmidonfinlem  7205
  Copyright terms: Public domain W3C validator