Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtriexmidlem | GIF version |
Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4498 or weak linearity in ordsoexmid 4539) with a proposition 𝜑. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.) |
Ref | Expression |
---|---|
ordtriexmidlem | ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ 𝑧) | |
2 | elrabi 2879 | . . . . . . . . 9 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 ∈ {∅}) | |
3 | velsn 3593 | . . . . . . . . 9 ⊢ (𝑧 ∈ {∅} ↔ 𝑧 = ∅) | |
4 | 2, 3 | sylib 121 | . . . . . . . 8 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 = ∅) |
5 | noel 3413 | . . . . . . . . 9 ⊢ ¬ 𝑦 ∈ ∅ | |
6 | eleq2 2230 | . . . . . . . . 9 ⊢ (𝑧 = ∅ → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ∅)) | |
7 | 5, 6 | mtbiri 665 | . . . . . . . 8 ⊢ (𝑧 = ∅ → ¬ 𝑦 ∈ 𝑧) |
8 | 4, 7 | syl 14 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ 𝑦 ∈ 𝑧) |
9 | 8 | adantl 275 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → ¬ 𝑦 ∈ 𝑧) |
10 | 1, 9 | pm2.21dd 610 | . . . . 5 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
11 | 10 | gen2 1438 | . . . 4 ⊢ ∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
12 | dftr2 4082 | . . . 4 ⊢ (Tr {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑})) | |
13 | 11, 12 | mpbir 145 | . . 3 ⊢ Tr {𝑥 ∈ {∅} ∣ 𝜑} |
14 | ssrab2 3227 | . . 3 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
15 | ord0 4369 | . . . . 5 ⊢ Ord ∅ | |
16 | ordsucim 4477 | . . . . 5 ⊢ (Ord ∅ → Ord suc ∅) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ Ord suc ∅ |
18 | suc0 4389 | . . . . 5 ⊢ suc ∅ = {∅} | |
19 | ordeq 4350 | . . . . 5 ⊢ (suc ∅ = {∅} → (Ord suc ∅ ↔ Ord {∅})) | |
20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (Ord suc ∅ ↔ Ord {∅}) |
21 | 17, 20 | mpbi 144 | . . 3 ⊢ Ord {∅} |
22 | trssord 4358 | . . 3 ⊢ ((Tr {𝑥 ∈ {∅} ∣ 𝜑} ∧ {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ Ord {∅}) → Ord {𝑥 ∈ {∅} ∣ 𝜑}) | |
23 | 13, 14, 21, 22 | mp3an 1327 | . 2 ⊢ Ord {𝑥 ∈ {∅} ∣ 𝜑} |
24 | p0ex 4167 | . . . 4 ⊢ {∅} ∈ V | |
25 | 24 | rabex 4126 | . . 3 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ V |
26 | 25 | elon 4352 | . 2 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} ∈ On ↔ Ord {𝑥 ∈ {∅} ∣ 𝜑}) |
27 | 23, 26 | mpbir 145 | 1 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ On |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 {crab 2448 ⊆ wss 3116 ∅c0 3409 {csn 3576 Tr wtr 4080 Ord word 4340 Oncon0 4341 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: ordtriexmid 4498 ontriexmidim 4499 ordtri2orexmid 4500 ontr2exmid 4502 onsucsssucexmid 4504 ordsoexmid 4539 0elsucexmid 4542 ordpwsucexmid 4547 unfiexmid 6883 exmidonfinlem 7149 |
Copyright terms: Public domain | W3C validator |