Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtriexmidlem | GIF version |
Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4479 or weak linearity in ordsoexmid 4520) with a proposition 𝜑. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.) |
Ref | Expression |
---|---|
ordtriexmidlem | ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ 𝑧) | |
2 | elrabi 2865 | . . . . . . . . 9 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 ∈ {∅}) | |
3 | velsn 3577 | . . . . . . . . 9 ⊢ (𝑧 ∈ {∅} ↔ 𝑧 = ∅) | |
4 | 2, 3 | sylib 121 | . . . . . . . 8 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 = ∅) |
5 | noel 3398 | . . . . . . . . 9 ⊢ ¬ 𝑦 ∈ ∅ | |
6 | eleq2 2221 | . . . . . . . . 9 ⊢ (𝑧 = ∅ → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ∅)) | |
7 | 5, 6 | mtbiri 665 | . . . . . . . 8 ⊢ (𝑧 = ∅ → ¬ 𝑦 ∈ 𝑧) |
8 | 4, 7 | syl 14 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ 𝑦 ∈ 𝑧) |
9 | 8 | adantl 275 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → ¬ 𝑦 ∈ 𝑧) |
10 | 1, 9 | pm2.21dd 610 | . . . . 5 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
11 | 10 | gen2 1430 | . . . 4 ⊢ ∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
12 | dftr2 4064 | . . . 4 ⊢ (Tr {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑})) | |
13 | 11, 12 | mpbir 145 | . . 3 ⊢ Tr {𝑥 ∈ {∅} ∣ 𝜑} |
14 | ssrab2 3213 | . . 3 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
15 | ord0 4351 | . . . . 5 ⊢ Ord ∅ | |
16 | ordsucim 4458 | . . . . 5 ⊢ (Ord ∅ → Ord suc ∅) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ Ord suc ∅ |
18 | suc0 4371 | . . . . 5 ⊢ suc ∅ = {∅} | |
19 | ordeq 4332 | . . . . 5 ⊢ (suc ∅ = {∅} → (Ord suc ∅ ↔ Ord {∅})) | |
20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (Ord suc ∅ ↔ Ord {∅}) |
21 | 17, 20 | mpbi 144 | . . 3 ⊢ Ord {∅} |
22 | trssord 4340 | . . 3 ⊢ ((Tr {𝑥 ∈ {∅} ∣ 𝜑} ∧ {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ Ord {∅}) → Ord {𝑥 ∈ {∅} ∣ 𝜑}) | |
23 | 13, 14, 21, 22 | mp3an 1319 | . 2 ⊢ Ord {𝑥 ∈ {∅} ∣ 𝜑} |
24 | p0ex 4149 | . . . 4 ⊢ {∅} ∈ V | |
25 | 24 | rabex 4108 | . . 3 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ V |
26 | 25 | elon 4334 | . 2 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} ∈ On ↔ Ord {𝑥 ∈ {∅} ∣ 𝜑}) |
27 | 23, 26 | mpbir 145 | 1 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ On |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1333 = wceq 1335 ∈ wcel 2128 {crab 2439 ⊆ wss 3102 ∅c0 3394 {csn 3560 Tr wtr 4062 Ord word 4322 Oncon0 4323 suc csuc 4325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-uni 3773 df-tr 4063 df-iord 4326 df-on 4328 df-suc 4331 |
This theorem is referenced by: ordtriexmid 4479 ontriexmidim 4480 ordtri2orexmid 4481 ontr2exmid 4483 onsucsssucexmid 4485 ordsoexmid 4520 0elsucexmid 4523 ordpwsucexmid 4528 unfiexmid 6859 exmidonfinlem 7122 |
Copyright terms: Public domain | W3C validator |