ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opex GIF version

Theorem opex 4315
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
opex.1 𝐴 ∈ V
opex.2 𝐵 ∈ V
Assertion
Ref Expression
opex 𝐴, 𝐵⟩ ∈ V

Proof of Theorem opex
StepHypRef Expression
1 opex.1 . 2 𝐴 ∈ V
2 opex.2 . 2 𝐵 ∈ V
3 opexg 4314 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
41, 2, 3mp2an 426 1 𝐴, 𝐵⟩ ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  otth2  4327  opabid  4344  elopab  4346  opabm  4369  elvvv  4782  relsnop  4825  xpiindim  4859  raliunxp  4863  rexiunxp  4864  intirr  5115  xpmlem  5149  dmsnm  5194  dmsnopg  5200  cnvcnvsn  5205  op2ndb  5212  cnviinm  5270  funopg  5352  fsn  5809  fvsn  5838  idref  5886  oprabid  6039  dfoprab2  6057  rnoprab  6093  fo1st  6309  fo2nd  6310  eloprabi  6348  xporderlem  6383  cnvoprab  6386  dmtpos  6408  rntpos  6409  tpostpos  6416  iinerm  6762  th3qlem2  6793  elixpsn  6890  ensn1  6956  mapsnen  6972  dom1o  6985  xpsnen  6988  xpcomco  6993  xpassen  6997  xpmapenlem  7018  phplem2  7022  ac6sfi  7068  djuss  7245  genipdm  7711  ioof  10175  wrdexb  11091  fsumcnv  11956  fprodcnv  12144  nninfct  12570  prdsex  13310  fnpsr  14639  txdis1cn  14960
  Copyright terms: Public domain W3C validator