ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opex GIF version

Theorem opex 4223
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
opex.1 𝐴 ∈ V
opex.2 𝐵 ∈ V
Assertion
Ref Expression
opex 𝐴, 𝐵⟩ ∈ V

Proof of Theorem opex
StepHypRef Expression
1 opex.1 . 2 𝐴 ∈ V
2 opex.2 . 2 𝐵 ∈ V
3 opexg 4222 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
41, 2, 3mp2an 426 1 𝐴, 𝐵⟩ ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2146  Vcvv 2735  cop 3592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598
This theorem is referenced by:  otth2  4235  opabid  4251  elopab  4252  opabm  4274  elvvv  4683  relsnop  4726  xpiindim  4757  raliunxp  4761  rexiunxp  4762  intirr  5007  xpmlem  5041  dmsnm  5086  dmsnopg  5092  cnvcnvsn  5097  op2ndb  5104  cnviinm  5162  funopg  5242  fsn  5680  fvsn  5703  idref  5748  oprabid  5897  dfoprab2  5912  rnoprab  5948  fo1st  6148  fo2nd  6149  eloprabi  6187  xporderlem  6222  cnvoprab  6225  dmtpos  6247  rntpos  6248  tpostpos  6255  iinerm  6597  th3qlem2  6628  elixpsn  6725  ensn1  6786  mapsnen  6801  xpsnen  6811  xpcomco  6816  xpassen  6820  xpmapenlem  6839  phplem2  6843  ac6sfi  6888  djuss  7059  genipdm  7490  ioof  9942  fsumcnv  11413  fprodcnv  11601  txdis1cn  13349
  Copyright terms: Public domain W3C validator