| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opex | GIF version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| opex.1 | ⊢ 𝐴 ∈ V |
| opex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opex | ⊢ 〈𝐴, 𝐵〉 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opexg 4262 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 〈cop 3626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: otth2 4275 opabid 4291 elopab 4293 opabm 4316 elvvv 4727 relsnop 4770 xpiindim 4804 raliunxp 4808 rexiunxp 4809 intirr 5057 xpmlem 5091 dmsnm 5136 dmsnopg 5142 cnvcnvsn 5147 op2ndb 5154 cnviinm 5212 funopg 5293 fsn 5737 fvsn 5760 idref 5806 oprabid 5957 dfoprab2 5973 rnoprab 6009 fo1st 6224 fo2nd 6225 eloprabi 6263 xporderlem 6298 cnvoprab 6301 dmtpos 6323 rntpos 6324 tpostpos 6331 iinerm 6675 th3qlem2 6706 elixpsn 6803 ensn1 6864 mapsnen 6879 xpsnen 6889 xpcomco 6894 xpassen 6898 xpmapenlem 6919 phplem2 6923 ac6sfi 6968 djuss 7145 genipdm 7600 ioof 10063 wrdexb 10964 fsumcnv 11619 fprodcnv 11807 nninfct 12233 prdsex 12971 fnpsr 14297 txdis1cn 14598 |
| Copyright terms: Public domain | W3C validator |