Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opex | GIF version |
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
opex.1 | ⊢ 𝐴 ∈ V |
opex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opex | ⊢ 〈𝐴, 𝐵〉 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opexg 4222 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 Vcvv 2735 〈cop 3592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 |
This theorem is referenced by: otth2 4235 opabid 4251 elopab 4252 opabm 4274 elvvv 4683 relsnop 4726 xpiindim 4757 raliunxp 4761 rexiunxp 4762 intirr 5007 xpmlem 5041 dmsnm 5086 dmsnopg 5092 cnvcnvsn 5097 op2ndb 5104 cnviinm 5162 funopg 5242 fsn 5680 fvsn 5703 idref 5748 oprabid 5897 dfoprab2 5912 rnoprab 5948 fo1st 6148 fo2nd 6149 eloprabi 6187 xporderlem 6222 cnvoprab 6225 dmtpos 6247 rntpos 6248 tpostpos 6255 iinerm 6597 th3qlem2 6628 elixpsn 6725 ensn1 6786 mapsnen 6801 xpsnen 6811 xpcomco 6816 xpassen 6820 xpmapenlem 6839 phplem2 6843 ac6sfi 6888 djuss 7059 genipdm 7490 ioof 9942 fsumcnv 11413 fprodcnv 11601 txdis1cn 13349 |
Copyright terms: Public domain | W3C validator |