Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opex | GIF version |
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
opex.1 | ⊢ 𝐴 ∈ V |
opex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opex | ⊢ 〈𝐴, 𝐵〉 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opexg 4206 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) | |
4 | 1, 2, 3 | mp2an 423 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 〈cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: otth2 4219 opabid 4235 elopab 4236 opabm 4258 elvvv 4667 relsnop 4710 xpiindim 4741 raliunxp 4745 rexiunxp 4746 intirr 4990 xpmlem 5024 dmsnm 5069 dmsnopg 5075 cnvcnvsn 5080 op2ndb 5087 cnviinm 5145 funopg 5222 fsn 5657 fvsn 5680 idref 5725 oprabid 5874 dfoprab2 5889 rnoprab 5925 fo1st 6125 fo2nd 6126 eloprabi 6164 xporderlem 6199 cnvoprab 6202 dmtpos 6224 rntpos 6225 tpostpos 6232 iinerm 6573 th3qlem2 6604 elixpsn 6701 ensn1 6762 mapsnen 6777 xpsnen 6787 xpcomco 6792 xpassen 6796 xpmapenlem 6815 phplem2 6819 ac6sfi 6864 djuss 7035 genipdm 7457 ioof 9907 fsumcnv 11378 fprodcnv 11566 txdis1cn 12918 |
Copyright terms: Public domain | W3C validator |