Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opex | GIF version |
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
opex.1 | ⊢ 𝐴 ∈ V |
opex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opex | ⊢ 〈𝐴, 𝐵〉 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opexg 4213 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) | |
4 | 1, 2, 3 | mp2an 424 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 〈cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: otth2 4226 opabid 4242 elopab 4243 opabm 4265 elvvv 4674 relsnop 4717 xpiindim 4748 raliunxp 4752 rexiunxp 4753 intirr 4997 xpmlem 5031 dmsnm 5076 dmsnopg 5082 cnvcnvsn 5087 op2ndb 5094 cnviinm 5152 funopg 5232 fsn 5668 fvsn 5691 idref 5736 oprabid 5885 dfoprab2 5900 rnoprab 5936 fo1st 6136 fo2nd 6137 eloprabi 6175 xporderlem 6210 cnvoprab 6213 dmtpos 6235 rntpos 6236 tpostpos 6243 iinerm 6585 th3qlem2 6616 elixpsn 6713 ensn1 6774 mapsnen 6789 xpsnen 6799 xpcomco 6804 xpassen 6808 xpmapenlem 6827 phplem2 6831 ac6sfi 6876 djuss 7047 genipdm 7478 ioof 9928 fsumcnv 11400 fprodcnv 11588 txdis1cn 13072 |
Copyright terms: Public domain | W3C validator |