| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opex | GIF version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| opex.1 | ⊢ 𝐴 ∈ V |
| opex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opex | ⊢ 〈𝐴, 𝐵〉 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opexg 4277 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 〈cop 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 |
| This theorem is referenced by: otth2 4290 opabid 4307 elopab 4309 opabm 4332 elvvv 4743 relsnop 4786 xpiindim 4820 raliunxp 4824 rexiunxp 4825 intirr 5075 xpmlem 5109 dmsnm 5154 dmsnopg 5160 cnvcnvsn 5165 op2ndb 5172 cnviinm 5230 funopg 5311 fsn 5762 fvsn 5789 idref 5835 oprabid 5986 dfoprab2 6002 rnoprab 6038 fo1st 6253 fo2nd 6254 eloprabi 6292 xporderlem 6327 cnvoprab 6330 dmtpos 6352 rntpos 6353 tpostpos 6360 iinerm 6704 th3qlem2 6735 elixpsn 6832 ensn1 6898 mapsnen 6914 xpsnen 6928 xpcomco 6933 xpassen 6937 xpmapenlem 6958 phplem2 6962 ac6sfi 7007 djuss 7184 genipdm 7642 ioof 10106 wrdexb 11019 fsumcnv 11798 fprodcnv 11986 nninfct 12412 prdsex 13151 fnpsr 14479 txdis1cn 14800 dom1o 16043 |
| Copyright terms: Public domain | W3C validator |