![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opex | GIF version |
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
opex.1 | ⊢ 𝐴 ∈ V |
opex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opex | ⊢ 〈𝐴, 𝐵〉 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opexg 4257 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 〈cop 3621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 |
This theorem is referenced by: otth2 4270 opabid 4286 elopab 4288 opabm 4311 elvvv 4722 relsnop 4765 xpiindim 4799 raliunxp 4803 rexiunxp 4804 intirr 5052 xpmlem 5086 dmsnm 5131 dmsnopg 5137 cnvcnvsn 5142 op2ndb 5149 cnviinm 5207 funopg 5288 fsn 5730 fvsn 5753 idref 5799 oprabid 5950 dfoprab2 5965 rnoprab 6001 fo1st 6210 fo2nd 6211 eloprabi 6249 xporderlem 6284 cnvoprab 6287 dmtpos 6309 rntpos 6310 tpostpos 6317 iinerm 6661 th3qlem2 6692 elixpsn 6789 ensn1 6850 mapsnen 6865 xpsnen 6875 xpcomco 6880 xpassen 6884 xpmapenlem 6905 phplem2 6909 ac6sfi 6954 djuss 7129 genipdm 7576 ioof 10037 wrdexb 10926 fsumcnv 11580 fprodcnv 11768 nninfct 12178 prdsex 12880 fnpsr 14153 txdis1cn 14446 |
Copyright terms: Public domain | W3C validator |