| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opex | GIF version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| opex.1 | ⊢ 𝐴 ∈ V |
| opex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opex | ⊢ 〈𝐴, 𝐵〉 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opexg 4314 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: otth2 4327 opabid 4344 elopab 4346 opabm 4369 elvvv 4782 relsnop 4825 xpiindim 4859 raliunxp 4863 rexiunxp 4864 intirr 5115 xpmlem 5149 dmsnm 5194 dmsnopg 5200 cnvcnvsn 5205 op2ndb 5212 cnviinm 5270 funopg 5352 fsn 5809 fvsn 5838 idref 5886 oprabid 6039 dfoprab2 6057 rnoprab 6093 fo1st 6309 fo2nd 6310 eloprabi 6348 xporderlem 6383 cnvoprab 6386 dmtpos 6408 rntpos 6409 tpostpos 6416 iinerm 6762 th3qlem2 6793 elixpsn 6890 ensn1 6956 mapsnen 6972 dom1o 6985 xpsnen 6988 xpcomco 6993 xpassen 6997 xpmapenlem 7018 phplem2 7022 ac6sfi 7068 djuss 7245 genipdm 7711 ioof 10175 wrdexb 11091 fsumcnv 11956 fprodcnv 12144 nninfct 12570 prdsex 13310 fnpsr 14639 txdis1cn 14960 |
| Copyright terms: Public domain | W3C validator |