| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opex | GIF version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| opex.1 | ⊢ 𝐴 ∈ V |
| opex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opex | ⊢ 〈𝐴, 𝐵〉 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opexg 4313 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: otth2 4326 opabid 4343 elopab 4345 opabm 4368 elvvv 4779 relsnop 4822 xpiindim 4856 raliunxp 4860 rexiunxp 4861 intirr 5111 xpmlem 5145 dmsnm 5190 dmsnopg 5196 cnvcnvsn 5201 op2ndb 5208 cnviinm 5266 funopg 5348 fsn 5800 fvsn 5827 idref 5873 oprabid 6026 dfoprab2 6042 rnoprab 6078 fo1st 6293 fo2nd 6294 eloprabi 6332 xporderlem 6367 cnvoprab 6370 dmtpos 6392 rntpos 6393 tpostpos 6400 iinerm 6744 th3qlem2 6775 elixpsn 6872 ensn1 6938 mapsnen 6954 xpsnen 6968 xpcomco 6973 xpassen 6977 xpmapenlem 6998 phplem2 7002 ac6sfi 7048 djuss 7225 genipdm 7691 ioof 10155 wrdexb 11070 fsumcnv 11934 fprodcnv 12122 nninfct 12548 prdsex 13288 fnpsr 14616 txdis1cn 14937 dom1o 16286 |
| Copyright terms: Public domain | W3C validator |