| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opex | GIF version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| opex.1 | ⊢ 𝐴 ∈ V |
| opex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opex | ⊢ 〈𝐴, 𝐵〉 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opexg 4262 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ 〈𝐴, 𝐵〉 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 〈cop 3626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: otth2 4275 opabid 4291 elopab 4293 opabm 4316 elvvv 4727 relsnop 4770 xpiindim 4804 raliunxp 4808 rexiunxp 4809 intirr 5057 xpmlem 5091 dmsnm 5136 dmsnopg 5142 cnvcnvsn 5147 op2ndb 5154 cnviinm 5212 funopg 5293 fsn 5735 fvsn 5758 idref 5804 oprabid 5955 dfoprab2 5971 rnoprab 6007 fo1st 6217 fo2nd 6218 eloprabi 6256 xporderlem 6291 cnvoprab 6294 dmtpos 6316 rntpos 6317 tpostpos 6324 iinerm 6668 th3qlem2 6699 elixpsn 6796 ensn1 6857 mapsnen 6872 xpsnen 6882 xpcomco 6887 xpassen 6891 xpmapenlem 6912 phplem2 6916 ac6sfi 6961 djuss 7138 genipdm 7586 ioof 10049 wrdexb 10950 fsumcnv 11605 fprodcnv 11793 nninfct 12219 prdsex 12957 fnpsr 14247 txdis1cn 14540 |
| Copyright terms: Public domain | W3C validator |