![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prmz | GIF version |
Description: A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
Ref | Expression |
---|---|
prmz | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 12251 | . 2 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | 1 | nnzd 9441 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℤcz 9320 ℙcprime 12248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-prm 12249 |
This theorem is referenced by: dvdsprime 12263 prm2orodd 12267 oddprmge3 12276 exprmfct 12279 prmdvdsfz 12280 isprm5lem 12282 isprm5 12283 coprm 12285 prmrp 12286 euclemma 12287 prmdvdsexpb 12290 prmexpb 12292 prmfac1 12293 rpexp 12294 prmndvdsfaclt 12297 cncongrprm 12298 phiprmpw 12363 phiprm 12364 fermltl 12375 prmdiv 12376 prmdiveq 12377 vfermltl 12392 reumodprminv 12394 modprm0 12395 oddprm 12400 prm23lt5 12404 prm23ge5 12405 pcneg 12466 pcprmpw2 12474 pcprmpw 12475 difsqpwdvds 12479 pcmpt 12484 pcmptdvds 12486 pcprod 12487 prmpwdvds 12496 prmunb 12503 1arithlem4 12507 1arith 12508 4sqlem11 12542 4sqlem12 12543 4sqlem13m 12544 4sqlem14 12545 4sqlem17 12548 4sqlem19 12550 wilthlem1 15153 lgslem1 15157 lgsval2lem 15167 lgsvalmod 15176 lgsmod 15183 lgsdirprm 15191 lgsdir 15192 lgsdilem2 15193 lgsdi 15194 lgsne0 15195 lgsprme0 15199 gausslemma2dlem1a 15215 gausslemma2dlem1cl 15216 gausslemma2dlem1f1o 15217 gausslemma2dlem4 15221 gausslemma2dlem5a 15222 lgseisenlem1 15227 lgseisenlem2 15228 lgseisenlem3 15229 lgseisenlem4 15230 lgseisen 15231 lgsquadlem2 15235 lgsquadlem3 15236 lgsquad2lem2 15239 m1lgs 15242 2lgslem1a 15245 2lgslem1 15248 2lgslem2 15249 2lgs 15261 2lgsoddprm 15270 2sqlem3 15274 2sqlem4 15275 2sqlem6 15277 2sqlem8 15280 |
Copyright terms: Public domain | W3C validator |