![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prmz | GIF version |
Description: A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
Ref | Expression |
---|---|
prmz | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 12248 | . 2 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | 1 | nnzd 9438 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℤcz 9317 ℙcprime 12245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-prm 12246 |
This theorem is referenced by: dvdsprime 12260 prm2orodd 12264 oddprmge3 12273 exprmfct 12276 prmdvdsfz 12277 isprm5lem 12279 isprm5 12280 coprm 12282 prmrp 12283 euclemma 12284 prmdvdsexpb 12287 prmexpb 12289 prmfac1 12290 rpexp 12291 prmndvdsfaclt 12294 cncongrprm 12295 phiprmpw 12360 phiprm 12361 fermltl 12372 prmdiv 12373 prmdiveq 12374 vfermltl 12389 reumodprminv 12391 modprm0 12392 oddprm 12397 prm23lt5 12401 prm23ge5 12402 pcneg 12463 pcprmpw2 12471 pcprmpw 12472 difsqpwdvds 12476 pcmpt 12481 pcmptdvds 12483 pcprod 12484 prmpwdvds 12493 prmunb 12500 1arithlem4 12504 1arith 12505 4sqlem11 12539 4sqlem12 12540 4sqlem13m 12541 4sqlem14 12542 4sqlem17 12545 4sqlem19 12547 wilthlem1 15112 lgslem1 15116 lgsval2lem 15126 lgsvalmod 15135 lgsmod 15142 lgsdirprm 15150 lgsdir 15151 lgsdilem2 15152 lgsdi 15153 lgsne0 15154 lgsprme0 15158 gausslemma2dlem1a 15174 gausslemma2dlem1cl 15175 gausslemma2dlem1f1o 15176 gausslemma2dlem4 15180 gausslemma2dlem5a 15181 lgseisenlem1 15186 lgseisenlem2 15187 lgseisenlem3 15188 lgseisenlem4 15189 lgseisen 15190 m1lgs 15192 2sqlem3 15204 2sqlem4 15205 2sqlem6 15207 2sqlem8 15210 |
Copyright terms: Public domain | W3C validator |