Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prmz | GIF version |
Description: A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
Ref | Expression |
---|---|
prmz | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 12038 | . 2 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | 1 | nnzd 9308 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℤcz 9187 ℙcprime 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 df-prm 12036 |
This theorem is referenced by: dvdsprime 12050 prm2orodd 12054 oddprmge3 12063 exprmfct 12066 prmdvdsfz 12067 isprm5lem 12069 isprm5 12070 coprm 12072 prmrp 12073 euclemma 12074 prmdvdsexpb 12077 prmexpb 12079 prmfac1 12080 rpexp 12081 prmndvdsfaclt 12084 cncongrprm 12085 phiprmpw 12150 phiprm 12151 fermltl 12162 prmdiv 12163 prmdiveq 12164 vfermltl 12179 reumodprminv 12181 modprm0 12182 oddprm 12187 prm23lt5 12191 prm23ge5 12192 pcneg 12252 pcprmpw2 12260 pcprmpw 12261 difsqpwdvds 12265 pcmpt 12269 pcmptdvds 12271 pcprod 12272 prmpwdvds 12281 prmunb 12288 1arithlem4 12292 1arith 12293 lgslem1 13501 lgsval2lem 13511 lgsvalmod 13520 lgsmod 13527 lgsdirprm 13535 lgsdir 13536 lgsdilem2 13537 lgsdi 13538 lgsne0 13539 lgsprme0 13543 2sqlem3 13553 2sqlem4 13554 2sqlem6 13556 2sqlem8 13559 |
Copyright terms: Public domain | W3C validator |