| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmz | GIF version | ||
| Description: A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
| Ref | Expression |
|---|---|
| prmz | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 12640 | . 2 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 2 | 1 | nnzd 9576 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℤcz 9454 ℙcprime 12637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-prm 12638 |
| This theorem is referenced by: dvdsprime 12652 prm2orodd 12656 oddprmge3 12665 exprmfct 12668 prmdvdsfz 12669 isprm5lem 12671 isprm5 12672 coprm 12674 prmrp 12675 euclemma 12676 prmdvdsexpb 12679 prmexpb 12681 prmfac1 12682 rpexp 12683 prmndvdsfaclt 12686 cncongrprm 12687 phiprmpw 12752 phiprm 12753 fermltl 12764 prmdiv 12765 prmdiveq 12766 vfermltl 12782 reumodprminv 12784 modprm0 12785 oddprm 12790 prm23lt5 12794 prm23ge5 12795 pcneg 12856 pcprmpw2 12864 pcprmpw 12865 difsqpwdvds 12869 pcmpt 12874 pcmptdvds 12876 pcprod 12877 prmpwdvds 12886 prmunb 12893 1arithlem4 12897 1arith 12898 4sqlem11 12932 4sqlem12 12933 4sqlem13m 12934 4sqlem14 12935 4sqlem17 12938 4sqlem19 12940 wilthlem1 15662 dvdsppwf1o 15671 perfect1 15680 lgslem1 15687 lgsval2lem 15697 lgsvalmod 15706 lgsmod 15713 lgsdirprm 15721 lgsdir 15722 lgsdilem2 15723 lgsdi 15724 lgsne0 15725 lgsprme0 15729 gausslemma2dlem1a 15745 gausslemma2dlem1cl 15746 gausslemma2dlem1f1o 15747 gausslemma2dlem4 15751 gausslemma2dlem5a 15752 lgseisenlem1 15757 lgseisenlem2 15758 lgseisenlem3 15759 lgseisenlem4 15760 lgseisen 15761 lgsquadlem2 15765 lgsquadlem3 15766 lgsquad2lem2 15769 m1lgs 15772 2lgslem1a 15775 2lgslem1 15778 2lgslem2 15779 2lgs 15791 2lgsoddprm 15800 2sqlem3 15804 2sqlem4 15805 2sqlem6 15807 2sqlem8 15810 |
| Copyright terms: Public domain | W3C validator |