![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prmz | GIF version |
Description: A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
Ref | Expression |
---|---|
prmz | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 12110 | . 2 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | 1 | nnzd 9374 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 ℤcz 9253 ℙcprime 12107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 df-prm 12108 |
This theorem is referenced by: dvdsprime 12122 prm2orodd 12126 oddprmge3 12135 exprmfct 12138 prmdvdsfz 12139 isprm5lem 12141 isprm5 12142 coprm 12144 prmrp 12145 euclemma 12146 prmdvdsexpb 12149 prmexpb 12151 prmfac1 12152 rpexp 12153 prmndvdsfaclt 12156 cncongrprm 12157 phiprmpw 12222 phiprm 12223 fermltl 12234 prmdiv 12235 prmdiveq 12236 vfermltl 12251 reumodprminv 12253 modprm0 12254 oddprm 12259 prm23lt5 12263 prm23ge5 12264 pcneg 12324 pcprmpw2 12332 pcprmpw 12333 difsqpwdvds 12337 pcmpt 12341 pcmptdvds 12343 pcprod 12344 prmpwdvds 12353 prmunb 12360 1arithlem4 12364 1arith 12365 lgslem1 14404 lgsval2lem 14414 lgsvalmod 14423 lgsmod 14430 lgsdirprm 14438 lgsdir 14439 lgsdilem2 14440 lgsdi 14441 lgsne0 14442 lgsprme0 14446 lgseisenlem1 14453 lgseisenlem2 14454 m1lgs 14455 2sqlem3 14467 2sqlem4 14468 2sqlem6 14470 2sqlem8 14473 |
Copyright terms: Public domain | W3C validator |