ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fientri3 GIF version

Theorem fientri3 6552
Description: Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
fientri3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵𝐵𝐴))

Proof of Theorem fientri3
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6408 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 118 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantr 270 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6408 . . . . 5 (𝐵 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐵𝑚)
54biimpi 118 . . . 4 (𝐵 ∈ Fin → ∃𝑚 ∈ ω 𝐵𝑚)
65ad2antlr 473 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝐵𝑚)
7 simplrr 503 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝑛)
87adantr 270 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐴𝑛)
9 simpr 108 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑛𝑚)
10 simplrl 502 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ ω)
1110adantr 270 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑛 ∈ ω)
12 simplrl 502 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑚 ∈ ω)
13 nndomo 6510 . . . . . . . . 9 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛𝑚𝑛𝑚))
1411, 12, 13syl2anc 403 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → (𝑛𝑚𝑛𝑚))
159, 14mpbird 165 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑛𝑚)
16 endomtr 6437 . . . . . . 7 ((𝐴𝑛𝑛𝑚) → 𝐴𝑚)
178, 15, 16syl2anc 403 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐴𝑚)
18 simplrr 503 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐵𝑚)
1918ensymd 6430 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑚𝐵)
20 domentr 6438 . . . . . 6 ((𝐴𝑚𝑚𝐵) → 𝐴𝐵)
2117, 19, 20syl2anc 403 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐴𝐵)
2221orcd 685 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → (𝐴𝐵𝐵𝐴))
23 simplrr 503 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐵𝑚)
24 simpr 108 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑚𝑛)
25 simplrl 502 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑚 ∈ ω)
2610adantr 270 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑛 ∈ ω)
27 nndomo 6510 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛𝑚𝑛))
2825, 26, 27syl2anc 403 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → (𝑚𝑛𝑚𝑛))
2924, 28mpbird 165 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑚𝑛)
30 endomtr 6437 . . . . . . 7 ((𝐵𝑚𝑚𝑛) → 𝐵𝑛)
3123, 29, 30syl2anc 403 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐵𝑛)
327adantr 270 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐴𝑛)
3332ensymd 6430 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑛𝐴)
34 domentr 6438 . . . . . 6 ((𝐵𝑛𝑛𝐴) → 𝐵𝐴)
3531, 33, 34syl2anc 403 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐵𝐴)
3635olcd 686 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → (𝐴𝐵𝐵𝐴))
37 simprl 498 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ ω)
38 nntri2or2 6191 . . . . 5 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛𝑚𝑚𝑛))
3910, 37, 38syl2anc 403 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛𝑚𝑚𝑛))
4022, 36, 39mpjaodan 745 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵𝐵𝐴))
416, 40rexlimddv 2487 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴𝐵𝐵𝐴))
423, 41rexlimddv 2487 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662  wcel 1434  wrex 2354  wss 2984   class class class wbr 3811  ωcom 4368  cen 6385  cdom 6386  Fincfn 6387
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-er 6222  df-en 6388  df-dom 6389  df-fin 6390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator