ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fientri3 GIF version

Theorem fientri3 6810
Description: Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
fientri3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵𝐵𝐴))

Proof of Theorem fientri3
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6662 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantr 274 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6662 . . . . 5 (𝐵 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐵𝑚)
54biimpi 119 . . . 4 (𝐵 ∈ Fin → ∃𝑚 ∈ ω 𝐵𝑚)
65ad2antlr 481 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝐵𝑚)
7 simplrr 526 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝑛)
87adantr 274 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐴𝑛)
9 simpr 109 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑛𝑚)
10 simplrl 525 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ ω)
1110adantr 274 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑛 ∈ ω)
12 simplrl 525 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑚 ∈ ω)
13 nndomo 6765 . . . . . . . . 9 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛𝑚𝑛𝑚))
1411, 12, 13syl2anc 409 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → (𝑛𝑚𝑛𝑚))
159, 14mpbird 166 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑛𝑚)
16 endomtr 6691 . . . . . . 7 ((𝐴𝑛𝑛𝑚) → 𝐴𝑚)
178, 15, 16syl2anc 409 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐴𝑚)
18 simplrr 526 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐵𝑚)
1918ensymd 6684 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑚𝐵)
20 domentr 6692 . . . . . 6 ((𝐴𝑚𝑚𝐵) → 𝐴𝐵)
2117, 19, 20syl2anc 409 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐴𝐵)
2221orcd 723 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → (𝐴𝐵𝐵𝐴))
23 simplrr 526 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐵𝑚)
24 simpr 109 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑚𝑛)
25 simplrl 525 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑚 ∈ ω)
2610adantr 274 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑛 ∈ ω)
27 nndomo 6765 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛𝑚𝑛))
2825, 26, 27syl2anc 409 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → (𝑚𝑛𝑚𝑛))
2924, 28mpbird 166 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑚𝑛)
30 endomtr 6691 . . . . . . 7 ((𝐵𝑚𝑚𝑛) → 𝐵𝑛)
3123, 29, 30syl2anc 409 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐵𝑛)
327adantr 274 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐴𝑛)
3332ensymd 6684 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑛𝐴)
34 domentr 6692 . . . . . 6 ((𝐵𝑛𝑛𝐴) → 𝐵𝐴)
3531, 33, 34syl2anc 409 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐵𝐴)
3635olcd 724 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → (𝐴𝐵𝐵𝐴))
37 simprl 521 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ ω)
38 nntri2or2 6401 . . . . 5 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛𝑚𝑚𝑛))
3910, 37, 38syl2anc 409 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛𝑚𝑚𝑛))
4022, 36, 39mpjaodan 788 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵𝐵𝐴))
416, 40rexlimddv 2557 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴𝐵𝐵𝐴))
423, 41rexlimddv 2557 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wcel 1481  wrex 2418  wss 3075   class class class wbr 3936  ωcom 4511  cen 6639  cdom 6640  Fincfn 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-tr 4034  df-id 4222  df-iord 4295  df-on 4297  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-er 6436  df-en 6642  df-dom 6643  df-fin 6644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator