![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pp0ex | GIF version |
Description: {∅, {∅}} (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pp0ex | ⊢ {∅, {∅}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 4218 | . . 3 ⊢ {∅} ∈ V | |
2 | 1 | pwex 4213 | . 2 ⊢ 𝒫 {∅} ∈ V |
3 | pwpw0ss 3831 | . 2 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
4 | 2, 3 | ssexi 4168 | 1 ⊢ {∅, {∅}} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ∅c0 3447 𝒫 cpw 3602 {csn 3619 {cpr 3620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 |
This theorem is referenced by: ord3ex 4220 ontr2exmid 4558 ordtri2or2exmidlem 4559 onsucelsucexmidlem 4562 regexmid 4568 reg2exmid 4569 reg3exmid 4613 nnregexmid 4654 acexmidlemcase 5914 acexmidlemv 5917 exmidpw2en 6970 exmidaclem 7270 |
Copyright terms: Public domain | W3C validator |