ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pp0ex GIF version

Theorem pp0ex 4241
Description: {∅, {∅}} (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pp0ex {∅, {∅}} ∈ V

Proof of Theorem pp0ex
StepHypRef Expression
1 p0ex 4240 . . 3 {∅} ∈ V
21pwex 4235 . 2 𝒫 {∅} ∈ V
3 pwpw0ss 3851 . 2 {∅, {∅}} ⊆ 𝒫 {∅}
42, 3ssexi 4190 1 {∅, {∅}} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2177  Vcvv 2773  c0 3464  𝒫 cpw 3621  {csn 3638  {cpr 3639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645
This theorem is referenced by:  ord3ex  4242  ontr2exmid  4581  ordtri2or2exmidlem  4582  onsucelsucexmidlem  4585  regexmid  4591  reg2exmid  4592  reg3exmid  4636  nnregexmid  4677  acexmidlemcase  5952  acexmidlemv  5955  exmidpw2en  7024  exmidaclem  7336
  Copyright terms: Public domain W3C validator