Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pp0ex | GIF version |
Description: {∅, {∅}} (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pp0ex | ⊢ {∅, {∅}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 4167 | . . 3 ⊢ {∅} ∈ V | |
2 | 1 | pwex 4162 | . 2 ⊢ 𝒫 {∅} ∈ V |
3 | pwpw0ss 3784 | . 2 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
4 | 2, 3 | ssexi 4120 | 1 ⊢ {∅, {∅}} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 ∅c0 3409 𝒫 cpw 3559 {csn 3576 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 |
This theorem is referenced by: ord3ex 4169 ontr2exmid 4502 ordtri2or2exmidlem 4503 onsucelsucexmidlem 4506 regexmid 4512 reg2exmid 4513 reg3exmid 4557 nnregexmid 4598 acexmidlemcase 5837 acexmidlemv 5840 exmidaclem 7164 |
Copyright terms: Public domain | W3C validator |