ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pp0ex GIF version

Theorem pp0ex 4272
Description: {∅, {∅}} (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pp0ex {∅, {∅}} ∈ V

Proof of Theorem pp0ex
StepHypRef Expression
1 p0ex 4271 . . 3 {∅} ∈ V
21pwex 4266 . 2 𝒫 {∅} ∈ V
3 pwpw0ss 3882 . 2 {∅, {∅}} ⊆ 𝒫 {∅}
42, 3ssexi 4221 1 {∅, {∅}} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  c0 3491  𝒫 cpw 3649  {csn 3666  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673
This theorem is referenced by:  ord3ex  4273  ontr2exmid  4616  ordtri2or2exmidlem  4617  onsucelsucexmidlem  4620  regexmid  4626  reg2exmid  4627  reg3exmid  4671  nnregexmid  4712  acexmidlemcase  5995  acexmidlemv  5998  exmidpw2en  7070  exmidaclem  7386
  Copyright terms: Public domain W3C validator