| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pp0ex | GIF version | ||
| Description: {∅, {∅}} (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pp0ex | ⊢ {∅, {∅}} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p0ex 4231 | . . 3 ⊢ {∅} ∈ V | |
| 2 | 1 | pwex 4226 | . 2 ⊢ 𝒫 {∅} ∈ V |
| 3 | pwpw0ss 3844 | . 2 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
| 4 | 2, 3 | ssexi 4181 | 1 ⊢ {∅, {∅}} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ∅c0 3459 𝒫 cpw 3615 {csn 3632 {cpr 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 |
| This theorem is referenced by: ord3ex 4233 ontr2exmid 4572 ordtri2or2exmidlem 4573 onsucelsucexmidlem 4576 regexmid 4582 reg2exmid 4583 reg3exmid 4627 nnregexmid 4668 acexmidlemcase 5938 acexmidlemv 5941 exmidpw2en 7008 exmidaclem 7319 |
| Copyright terms: Public domain | W3C validator |