Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pp0ex | GIF version |
Description: {∅, {∅}} (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pp0ex | ⊢ {∅, {∅}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 4172 | . . 3 ⊢ {∅} ∈ V | |
2 | 1 | pwex 4167 | . 2 ⊢ 𝒫 {∅} ∈ V |
3 | pwpw0ss 3789 | . 2 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
4 | 2, 3 | ssexi 4125 | 1 ⊢ {∅, {∅}} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ∅c0 3414 𝒫 cpw 3564 {csn 3581 {cpr 3582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 |
This theorem is referenced by: ord3ex 4174 ontr2exmid 4507 ordtri2or2exmidlem 4508 onsucelsucexmidlem 4511 regexmid 4517 reg2exmid 4518 reg3exmid 4562 nnregexmid 4603 acexmidlemcase 5845 acexmidlemv 5848 exmidaclem 7172 |
Copyright terms: Public domain | W3C validator |