ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.2uz GIF version

Theorem r19.2uz 10957
Description: A version of r19.2m 3501 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
r19.2uz (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem r19.2uz
StepHypRef Expression
1 eluzelz 9496 . . . . . 6 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2 uzid 9501 . . . . . 6 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
3 elex2 2746 . . . . . 6 (𝑗 ∈ (ℤ𝑗) → ∃𝑘 𝑘 ∈ (ℤ𝑗))
41, 2, 33syl 17 . . . . 5 (𝑗 ∈ (ℤ𝑀) → ∃𝑘 𝑘 ∈ (ℤ𝑗))
5 rexuz3.1 . . . . 5 𝑍 = (ℤ𝑀)
64, 5eleq2s 2265 . . . 4 (𝑗𝑍 → ∃𝑘 𝑘 ∈ (ℤ𝑗))
7 r19.2m 3501 . . . 4 ((∃𝑘 𝑘 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘 ∈ (ℤ𝑗)𝜑)
86, 7sylan 281 . . 3 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘 ∈ (ℤ𝑗)𝜑)
95uztrn2 9504 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
109ex 114 . . . . . 6 (𝑗𝑍 → (𝑘 ∈ (ℤ𝑗) → 𝑘𝑍))
1110anim1d 334 . . . . 5 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) ∧ 𝜑) → (𝑘𝑍𝜑)))
1211reximdv2 2569 . . . 4 (𝑗𝑍 → (∃𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑))
1312imp 123 . . 3 ((𝑗𝑍 ∧ ∃𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘𝑍 𝜑)
148, 13syldan 280 . 2 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘𝑍 𝜑)
1514rexlimiva 2582 1 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  cfv 5198  cz 9212  cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-ltwlin 7887
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-neg 8093  df-z 9213  df-uz 9488
This theorem is referenced by:  recvguniq  10959  climge0  11288
  Copyright terms: Public domain W3C validator