ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.2uz GIF version

Theorem r19.2uz 11158
Description: A version of r19.2m 3537 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
r19.2uz (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem r19.2uz
StepHypRef Expression
1 eluzelz 9610 . . . . . 6 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2 uzid 9615 . . . . . 6 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
3 elex2 2779 . . . . . 6 (𝑗 ∈ (ℤ𝑗) → ∃𝑘 𝑘 ∈ (ℤ𝑗))
41, 2, 33syl 17 . . . . 5 (𝑗 ∈ (ℤ𝑀) → ∃𝑘 𝑘 ∈ (ℤ𝑗))
5 rexuz3.1 . . . . 5 𝑍 = (ℤ𝑀)
64, 5eleq2s 2291 . . . 4 (𝑗𝑍 → ∃𝑘 𝑘 ∈ (ℤ𝑗))
7 r19.2m 3537 . . . 4 ((∃𝑘 𝑘 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘 ∈ (ℤ𝑗)𝜑)
86, 7sylan 283 . . 3 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘 ∈ (ℤ𝑗)𝜑)
95uztrn2 9619 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
109ex 115 . . . . . 6 (𝑗𝑍 → (𝑘 ∈ (ℤ𝑗) → 𝑘𝑍))
1110anim1d 336 . . . . 5 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) ∧ 𝜑) → (𝑘𝑍𝜑)))
1211reximdv2 2596 . . . 4 (𝑗𝑍 → (∃𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑))
1312imp 124 . . 3 ((𝑗𝑍 ∧ ∃𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘𝑍 𝜑)
148, 13syldan 282 . 2 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘𝑍 𝜑)
1514rexlimiva 2609 1 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  cfv 5258  cz 9326  cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-ltwlin 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-neg 8200  df-z 9327  df-uz 9602
This theorem is referenced by:  recvguniq  11160  climge0  11490
  Copyright terms: Public domain W3C validator