| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemml | GIF version | ||
| Description: Lemma for suplocexpr 7809. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| suplocexpr.ub | ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
| suplocexpr.loc | ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
| Ref | Expression |
|---|---|
| suplocexprlemml | ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocexpr.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | suplocexpr.ub | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) | |
| 3 | suplocexpr.loc | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) | |
| 4 | 1, 2, 3 | suplocexprlemss 7799 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ P) |
| 5 | 4 | sselda 3184 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ P) |
| 6 | prop 7559 | . . . . 5 ⊢ (𝑥 ∈ P → 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P) | |
| 7 | prml 7561 | . . . . 5 ⊢ (〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
| 8 | 5, 6, 7 | 3syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 9 | 8 | ralrimiva 2570 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 10 | r19.2m 3538 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) → ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
| 11 | 1, 9, 10 | syl2anc 411 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 12 | suplocexprlemell 7797 | . . . 4 ⊢ (𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥)) | |
| 13 | 12 | rexbii 2504 | . . 3 ⊢ (∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑠 ∈ Q ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥)) |
| 14 | rexcom 2661 | . . 3 ⊢ (∃𝑠 ∈ Q ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥) ↔ ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
| 15 | 13, 14 | bitri 184 | . 2 ⊢ (∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 16 | 11, 15 | sylibr 134 | 1 ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 〈cop 3626 ∪ cuni 3840 class class class wbr 4034 “ cima 4667 ‘cfv 5259 1st c1st 6205 2nd c2nd 6206 Qcnq 7364 Pcnp 7375 <P cltp 7379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-2nd 6208 df-qs 6607 df-ni 7388 df-nqqs 7432 df-inp 7550 df-iltp 7554 |
| This theorem is referenced by: suplocexprlemex 7806 |
| Copyright terms: Public domain | W3C validator |