ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemml GIF version

Theorem suplocexprlemml 7911
Description: Lemma for suplocexpr 7920. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexprlemml (𝜑 → ∃𝑠Q 𝑠 (1st𝐴))
Distinct variable groups:   𝐴,𝑠,𝑥,𝑦   𝜑,𝑠,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)

Proof of Theorem suplocexprlemml
StepHypRef Expression
1 suplocexpr.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
2 suplocexpr.ub . . . . . . 7 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
3 suplocexpr.loc . . . . . . 7 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
41, 2, 3suplocexprlemss 7910 . . . . . 6 (𝜑𝐴P)
54sselda 3224 . . . . 5 ((𝜑𝑥𝐴) → 𝑥P)
6 prop 7670 . . . . 5 (𝑥P → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ P)
7 prml 7672 . . . . 5 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ P → ∃𝑠Q 𝑠 ∈ (1st𝑥))
85, 6, 73syl 17 . . . 4 ((𝜑𝑥𝐴) → ∃𝑠Q 𝑠 ∈ (1st𝑥))
98ralrimiva 2603 . . 3 (𝜑 → ∀𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥))
10 r19.2m 3578 . . 3 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥)) → ∃𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥))
111, 9, 10syl2anc 411 . 2 (𝜑 → ∃𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥))
12 suplocexprlemell 7908 . . . 4 (𝑠 (1st𝐴) ↔ ∃𝑥𝐴 𝑠 ∈ (1st𝑥))
1312rexbii 2537 . . 3 (∃𝑠Q 𝑠 (1st𝐴) ↔ ∃𝑠Q𝑥𝐴 𝑠 ∈ (1st𝑥))
14 rexcom 2695 . . 3 (∃𝑠Q𝑥𝐴 𝑠 ∈ (1st𝑥) ↔ ∃𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥))
1513, 14bitri 184 . 2 (∃𝑠Q 𝑠 (1st𝐴) ↔ ∃𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥))
1611, 15sylibr 134 1 (𝜑 → ∃𝑠Q 𝑠 (1st𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  wex 1538  wcel 2200  wral 2508  wrex 2509  cop 3669   cuni 3888   class class class wbr 4083  cima 4722  cfv 5318  1st c1st 6290  2nd c2nd 6291  Qcnq 7475  Pcnp 7486  <P cltp 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6292  df-2nd 6293  df-qs 6694  df-ni 7499  df-nqqs 7543  df-inp 7661  df-iltp 7665
This theorem is referenced by:  suplocexprlemex  7917
  Copyright terms: Public domain W3C validator