| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemml | GIF version | ||
| Description: Lemma for suplocexpr 7851. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| suplocexpr.ub | ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
| suplocexpr.loc | ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
| Ref | Expression |
|---|---|
| suplocexprlemml | ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocexpr.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | suplocexpr.ub | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) | |
| 3 | suplocexpr.loc | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) | |
| 4 | 1, 2, 3 | suplocexprlemss 7841 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ P) |
| 5 | 4 | sselda 3195 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ P) |
| 6 | prop 7601 | . . . . 5 ⊢ (𝑥 ∈ P → 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P) | |
| 7 | prml 7603 | . . . . 5 ⊢ (〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
| 8 | 5, 6, 7 | 3syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 9 | 8 | ralrimiva 2580 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 10 | r19.2m 3549 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) → ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
| 11 | 1, 9, 10 | syl2anc 411 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 12 | suplocexprlemell 7839 | . . . 4 ⊢ (𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥)) | |
| 13 | 12 | rexbii 2514 | . . 3 ⊢ (∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑠 ∈ Q ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥)) |
| 14 | rexcom 2671 | . . 3 ⊢ (∃𝑠 ∈ Q ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥) ↔ ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
| 15 | 13, 14 | bitri 184 | . 2 ⊢ (∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 16 | 11, 15 | sylibr 134 | 1 ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 〈cop 3638 ∪ cuni 3853 class class class wbr 4048 “ cima 4683 ‘cfv 5277 1st c1st 6234 2nd c2nd 6235 Qcnq 7406 Pcnp 7417 <P cltp 7421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1st 6236 df-2nd 6237 df-qs 6636 df-ni 7430 df-nqqs 7474 df-inp 7592 df-iltp 7596 |
| This theorem is referenced by: suplocexprlemex 7848 |
| Copyright terms: Public domain | W3C validator |