ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemml GIF version

Theorem suplocexprlemml 7776
Description: Lemma for suplocexpr 7785. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexprlemml (𝜑 → ∃𝑠Q 𝑠 (1st𝐴))
Distinct variable groups:   𝐴,𝑠,𝑥,𝑦   𝜑,𝑠,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)

Proof of Theorem suplocexprlemml
StepHypRef Expression
1 suplocexpr.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
2 suplocexpr.ub . . . . . . 7 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
3 suplocexpr.loc . . . . . . 7 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
41, 2, 3suplocexprlemss 7775 . . . . . 6 (𝜑𝐴P)
54sselda 3179 . . . . 5 ((𝜑𝑥𝐴) → 𝑥P)
6 prop 7535 . . . . 5 (𝑥P → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ P)
7 prml 7537 . . . . 5 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ P → ∃𝑠Q 𝑠 ∈ (1st𝑥))
85, 6, 73syl 17 . . . 4 ((𝜑𝑥𝐴) → ∃𝑠Q 𝑠 ∈ (1st𝑥))
98ralrimiva 2567 . . 3 (𝜑 → ∀𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥))
10 r19.2m 3533 . . 3 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥)) → ∃𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥))
111, 9, 10syl2anc 411 . 2 (𝜑 → ∃𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥))
12 suplocexprlemell 7773 . . . 4 (𝑠 (1st𝐴) ↔ ∃𝑥𝐴 𝑠 ∈ (1st𝑥))
1312rexbii 2501 . . 3 (∃𝑠Q 𝑠 (1st𝐴) ↔ ∃𝑠Q𝑥𝐴 𝑠 ∈ (1st𝑥))
14 rexcom 2658 . . 3 (∃𝑠Q𝑥𝐴 𝑠 ∈ (1st𝑥) ↔ ∃𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥))
1513, 14bitri 184 . 2 (∃𝑠Q 𝑠 (1st𝐴) ↔ ∃𝑥𝐴𝑠Q 𝑠 ∈ (1st𝑥))
1611, 15sylibr 134 1 (𝜑 → ∃𝑠Q 𝑠 (1st𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  wex 1503  wcel 2164  wral 2472  wrex 2473  cop 3621   cuni 3835   class class class wbr 4029  cima 4662  cfv 5254  1st c1st 6191  2nd c2nd 6192  Qcnq 7340  Pcnp 7351  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-qs 6593  df-ni 7364  df-nqqs 7408  df-inp 7526  df-iltp 7530
This theorem is referenced by:  suplocexprlemex  7782
  Copyright terms: Public domain W3C validator