| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemml | GIF version | ||
| Description: Lemma for suplocexpr 7900. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| suplocexpr.ub | ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
| suplocexpr.loc | ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
| Ref | Expression |
|---|---|
| suplocexprlemml | ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocexpr.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | suplocexpr.ub | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) | |
| 3 | suplocexpr.loc | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) | |
| 4 | 1, 2, 3 | suplocexprlemss 7890 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ P) |
| 5 | 4 | sselda 3224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ P) |
| 6 | prop 7650 | . . . . 5 ⊢ (𝑥 ∈ P → 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P) | |
| 7 | prml 7652 | . . . . 5 ⊢ (〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
| 8 | 5, 6, 7 | 3syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 9 | 8 | ralrimiva 2603 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 10 | r19.2m 3578 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) → ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
| 11 | 1, 9, 10 | syl2anc 411 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 12 | suplocexprlemell 7888 | . . . 4 ⊢ (𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥)) | |
| 13 | 12 | rexbii 2537 | . . 3 ⊢ (∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑠 ∈ Q ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥)) |
| 14 | rexcom 2695 | . . 3 ⊢ (∃𝑠 ∈ Q ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥) ↔ ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
| 15 | 13, 14 | bitri 184 | . 2 ⊢ (∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
| 16 | 11, 15 | sylibr 134 | 1 ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 〈cop 3669 ∪ cuni 3887 class class class wbr 4082 “ cima 4719 ‘cfv 5314 1st c1st 6274 2nd c2nd 6275 Qcnq 7455 Pcnp 7466 <P cltp 7470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-1st 6276 df-2nd 6277 df-qs 6676 df-ni 7479 df-nqqs 7523 df-inp 7641 df-iltp 7645 |
| This theorem is referenced by: suplocexprlemex 7897 |
| Copyright terms: Public domain | W3C validator |