Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplocexprlemml | GIF version |
Description: Lemma for suplocexpr 7666. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
Ref | Expression |
---|---|
suplocexpr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
suplocexpr.ub | ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
suplocexpr.loc | ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
Ref | Expression |
---|---|
suplocexprlemml | ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocexpr.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
2 | suplocexpr.ub | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) | |
3 | suplocexpr.loc | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) | |
4 | 1, 2, 3 | suplocexprlemss 7656 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ P) |
5 | 4 | sselda 3142 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ P) |
6 | prop 7416 | . . . . 5 ⊢ (𝑥 ∈ P → 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P) | |
7 | prml 7418 | . . . . 5 ⊢ (〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
8 | 5, 6, 7 | 3syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
9 | 8 | ralrimiva 2539 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
10 | r19.2m 3495 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) → ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
11 | 1, 9, 10 | syl2anc 409 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
12 | suplocexprlemell 7654 | . . . 4 ⊢ (𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥)) | |
13 | 12 | rexbii 2473 | . . 3 ⊢ (∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑠 ∈ Q ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥)) |
14 | rexcom 2630 | . . 3 ⊢ (∃𝑠 ∈ Q ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥) ↔ ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
15 | 13, 14 | bitri 183 | . 2 ⊢ (∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
16 | 11, 15 | sylibr 133 | 1 ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 〈cop 3579 ∪ cuni 3789 class class class wbr 3982 “ cima 4607 ‘cfv 5188 1st c1st 6106 2nd c2nd 6107 Qcnq 7221 Pcnp 7232 <P cltp 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-qs 6507 df-ni 7245 df-nqqs 7289 df-inp 7407 df-iltp 7411 |
This theorem is referenced by: suplocexprlemex 7663 |
Copyright terms: Public domain | W3C validator |