Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplocexprlemml | GIF version |
Description: Lemma for suplocexpr 7687. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
Ref | Expression |
---|---|
suplocexpr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
suplocexpr.ub | ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
suplocexpr.loc | ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
Ref | Expression |
---|---|
suplocexprlemml | ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocexpr.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
2 | suplocexpr.ub | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) | |
3 | suplocexpr.loc | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) | |
4 | 1, 2, 3 | suplocexprlemss 7677 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ P) |
5 | 4 | sselda 3147 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ P) |
6 | prop 7437 | . . . . 5 ⊢ (𝑥 ∈ P → 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P) | |
7 | prml 7439 | . . . . 5 ⊢ (〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
8 | 5, 6, 7 | 3syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
9 | 8 | ralrimiva 2543 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
10 | r19.2m 3501 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) → ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
11 | 1, 9, 10 | syl2anc 409 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
12 | suplocexprlemell 7675 | . . . 4 ⊢ (𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥)) | |
13 | 12 | rexbii 2477 | . . 3 ⊢ (∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑠 ∈ Q ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥)) |
14 | rexcom 2634 | . . 3 ⊢ (∃𝑠 ∈ Q ∃𝑥 ∈ 𝐴 𝑠 ∈ (1st ‘𝑥) ↔ ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) | |
15 | 13, 14 | bitri 183 | . 2 ⊢ (∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝑥)) |
16 | 11, 15 | sylibr 133 | 1 ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 703 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 〈cop 3586 ∪ cuni 3796 class class class wbr 3989 “ cima 4614 ‘cfv 5198 1st c1st 6117 2nd c2nd 6118 Qcnq 7242 Pcnp 7253 <P cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-qs 6519 df-ni 7266 df-nqqs 7310 df-inp 7428 df-iltp 7432 |
This theorem is referenced by: suplocexprlemex 7684 |
Copyright terms: Public domain | W3C validator |