| Step | Hyp | Ref
| Expression |
| 1 | | caucvgpr.f |
. . 3
⊢ (𝜑 → 𝐹:N⟶Q) |
| 2 | | caucvgpr.cau |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) |
| 3 | | caucvgpr.bnd |
. . 3
⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) |
| 4 | | opeq1 3808 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑗 → 〈𝑧, 1o〉 = 〈𝑗,
1o〉) |
| 5 | 4 | eceq1d 6628 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑗 → [〈𝑧, 1o〉]
~Q = [〈𝑗, 1o〉]
~Q ) |
| 6 | 5 | fveq2d 5562 |
. . . . . . . . 9
⊢ (𝑧 = 𝑗 →
(*Q‘[〈𝑧, 1o〉]
~Q ) = (*Q‘[〈𝑗, 1o〉]
~Q )) |
| 7 | 6 | oveq2d 5938 |
. . . . . . . 8
⊢ (𝑧 = 𝑗 → (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) = (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
| 8 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑧 = 𝑗 → (𝐹‘𝑧) = (𝐹‘𝑗)) |
| 9 | 7, 8 | breq12d 4046 |
. . . . . . 7
⊢ (𝑧 = 𝑗 → ((𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧) ↔ (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 10 | 9 | cbvrexv 2730 |
. . . . . 6
⊢
(∃𝑧 ∈
N (𝑙
+Q (*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧) ↔ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
| 11 | 10 | a1i 9 |
. . . . 5
⊢ (𝑙 ∈ Q →
(∃𝑧 ∈
N (𝑙
+Q (*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧) ↔ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 12 | 11 | rabbiia 2748 |
. . . 4
⊢ {𝑙 ∈ Q ∣
∃𝑧 ∈
N (𝑙
+Q (*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)} = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
| 13 | 8, 6 | oveq12d 5940 |
. . . . . . . 8
⊢ (𝑧 = 𝑗 → ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) = ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
| 14 | 13 | breq1d 4043 |
. . . . . . 7
⊢ (𝑧 = 𝑗 → (((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢)) |
| 15 | 14 | cbvrexv 2730 |
. . . . . 6
⊢
(∃𝑧 ∈
N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢) |
| 16 | 15 | a1i 9 |
. . . . 5
⊢ (𝑢 ∈ Q →
(∃𝑧 ∈
N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢)) |
| 17 | 16 | rabbiia 2748 |
. . . 4
⊢ {𝑢 ∈ Q ∣
∃𝑧 ∈
N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢} = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} |
| 18 | 12, 17 | opeq12i 3813 |
. . 3
⊢
〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉 = 〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 |
| 19 | 1, 2, 3, 18 | caucvgprlemcl 7743 |
. 2
⊢ (𝜑 → 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉 ∈
P) |
| 20 | 1, 2, 3, 18 | caucvgprlemlim 7748 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ Q ∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 〈{𝑙 ∈ Q ∣
∃𝑧 ∈
N (𝑙
+Q (*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉))) |
| 21 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉 → (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) = (〈{𝑙 ∈ Q ∣
∃𝑧 ∈
N (𝑙
+Q (*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉)) |
| 22 | 21 | breq2d 4045 |
. . . . . . 7
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ↔ 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉))) |
| 23 | | breq1 4036 |
. . . . . . 7
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉 → (𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉 ↔
〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉)) |
| 24 | 22, 23 | anbi12d 473 |
. . . . . 6
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉 → ((〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉) ↔
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 〈{𝑙 ∈ Q ∣
∃𝑧 ∈
N (𝑙
+Q (*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉))) |
| 25 | 24 | imbi2d 230 |
. . . . 5
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉 → ((𝑗 <N
𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉)) ↔ (𝑗 <N
𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 〈{𝑙 ∈ Q ∣
∃𝑧 ∈
N (𝑙
+Q (*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉)))) |
| 26 | 25 | rexralbidv 2523 |
. . . 4
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉 → (∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉)) ↔
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 〈{𝑙 ∈ Q ∣
∃𝑧 ∈
N (𝑙
+Q (*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉)))) |
| 27 | 26 | ralbidv 2497 |
. . 3
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉 → (∀𝑥 ∈ Q
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉)) ↔
∀𝑥 ∈
Q ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 〈{𝑙 ∈ Q ∣
∃𝑧 ∈
N (𝑙
+Q (*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉)))) |
| 28 | 27 | rspcev 2868 |
. 2
⊢
((〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉 ∈ P
∧ ∀𝑥 ∈
Q ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ N (𝑙 +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 〈{𝑙 ∈ Q ∣
∃𝑧 ∈
N (𝑙
+Q (*Q‘[〈𝑧, 1o〉]
~Q )) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ N ((𝐹‘𝑧) +Q
(*Q‘[〈𝑧, 1o〉]
~Q )) <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉))) →
∃𝑦 ∈
P ∀𝑥
∈ Q ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N
𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉))) |
| 29 | 19, 20, 28 | syl2anc 411 |
1
⊢ (𝜑 → ∃𝑦 ∈ P ∀𝑥 ∈ Q
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑘) +Q
𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q
𝑢}〉))) |