Step | Hyp | Ref
| Expression |
1 | | caucvgprpr.f |
. 2
⊢ (𝜑 → 𝐹:N⟶P) |
2 | | caucvgprpr.cau |
. 2
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑛, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑛, 1o⟩]
~Q ) <Q 𝑢}⟩) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑛, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑛, 1o⟩]
~Q ) <Q 𝑢}⟩)))) |
3 | | caucvgprpr.bnd |
. 2
⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) |
4 | | caucvgprpr.lim |
. . 3
⊢ 𝐿 = ⟨{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
⟨{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[⟨𝑟, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩}⟩ |
5 | | opeq1 3780 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑠 → ⟨𝑟, 1o⟩ = ⟨𝑠,
1o⟩) |
6 | 5 | eceq1d 6574 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑠 → [⟨𝑟, 1o⟩]
~Q = [⟨𝑠, 1o⟩]
~Q ) |
7 | 6 | fveq2d 5521 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑠 →
(*Q‘[⟨𝑟, 1o⟩]
~Q ) = (*Q‘[⟨𝑠, 1o⟩]
~Q )) |
8 | 7 | oveq2d 5894 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑠 → (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) = (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q ))) |
9 | 8 | breq2d 4017 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑠 → (𝑝 <Q (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) ↔ 𝑝 <Q (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )))) |
10 | 9 | abbidv 2295 |
. . . . . . . . 9
⊢ (𝑟 = 𝑠 → {𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q ))}) |
11 | 8 | breq1d 4015 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑠 → ((𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) <Q 𝑞 ↔ (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )) <Q 𝑞)) |
12 | 11 | abbidv 2295 |
. . . . . . . . 9
⊢ (𝑟 = 𝑠 → {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )) <Q 𝑞}) |
13 | 10, 12 | opeq12d 3788 |
. . . . . . . 8
⊢ (𝑟 = 𝑠 → ⟨{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) <Q 𝑞}⟩ = ⟨{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )) <Q 𝑞}⟩) |
14 | | fveq2 5517 |
. . . . . . . 8
⊢ (𝑟 = 𝑠 → (𝐹‘𝑟) = (𝐹‘𝑠)) |
15 | 13, 14 | breq12d 4018 |
. . . . . . 7
⊢ (𝑟 = 𝑠 → (⟨{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑟) ↔ ⟨{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑠))) |
16 | 15 | cbvrexv 2706 |
. . . . . 6
⊢
(∃𝑟 ∈
N ⟨{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑟) ↔ ∃𝑠 ∈ N ⟨{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑠)) |
17 | 16 | a1i 9 |
. . . . 5
⊢ (𝑙 ∈ Q →
(∃𝑟 ∈
N ⟨{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑟) ↔ ∃𝑠 ∈ N ⟨{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑠))) |
18 | 17 | rabbiia 2724 |
. . . 4
⊢ {𝑙 ∈ Q ∣
∃𝑟 ∈
N ⟨{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑟)} = {𝑙 ∈ Q ∣ ∃𝑠 ∈ N
⟨{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[⟨𝑠, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑠)} |
19 | 7 | breq2d 4017 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑠 → (𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q ) ↔ 𝑝 <Q
(*Q‘[⟨𝑠, 1o⟩]
~Q ))) |
20 | 19 | abbidv 2295 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑠 → {𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )} = {𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )}) |
21 | 7 | breq1d 4015 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑠 →
((*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞 ↔
(*Q‘[⟨𝑠, 1o⟩]
~Q ) <Q 𝑞)) |
22 | 21 | abbidv 2295 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑠 → {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞} = {𝑞 ∣
(*Q‘[⟨𝑠, 1o⟩]
~Q ) <Q 𝑞}) |
23 | 20, 22 | opeq12d 3788 |
. . . . . . . . 9
⊢ (𝑟 = 𝑠 → ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩ = ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑠, 1o⟩]
~Q ) <Q 𝑞}⟩) |
24 | 14, 23 | oveq12d 5896 |
. . . . . . . 8
⊢ (𝑟 = 𝑠 → ((𝐹‘𝑟) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩) = ((𝐹‘𝑠) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑠, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
25 | 24 | breq1d 4015 |
. . . . . . 7
⊢ (𝑟 = 𝑠 → (((𝐹‘𝑟) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩ ↔ ((𝐹‘𝑠) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑠, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩)) |
26 | 25 | cbvrexv 2706 |
. . . . . 6
⊢
(∃𝑟 ∈
N ((𝐹‘𝑟) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩ ↔ ∃𝑠 ∈ N ((𝐹‘𝑠) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑠, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩) |
27 | 26 | a1i 9 |
. . . . 5
⊢ (𝑢 ∈ Q →
(∃𝑟 ∈
N ((𝐹‘𝑟) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩ ↔ ∃𝑠 ∈ N ((𝐹‘𝑠) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑠, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩)) |
28 | 27 | rabbiia 2724 |
. . . 4
⊢ {𝑢 ∈ Q ∣
∃𝑟 ∈
N ((𝐹‘𝑟) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩} = {𝑢 ∈ Q ∣ ∃𝑠 ∈ N ((𝐹‘𝑠) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑠, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩} |
29 | 18, 28 | opeq12i 3785 |
. . 3
⊢
⟨{𝑙 ∈
Q ∣ ∃𝑟 ∈ N ⟨{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑟, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑟, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩}⟩ = ⟨{𝑙 ∈ Q ∣
∃𝑠 ∈
N ⟨{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑠)}, {𝑢 ∈ Q ∣ ∃𝑠 ∈ N ((𝐹‘𝑠) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑠, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩}⟩ |
30 | 4, 29 | eqtri 2198 |
. 2
⊢ 𝐿 = ⟨{𝑙 ∈ Q ∣ ∃𝑠 ∈ N
⟨{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[⟨𝑠, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝑠)}, {𝑢 ∈ Q ∣ ∃𝑠 ∈ N ((𝐹‘𝑠) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝑠, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝑠, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩}⟩ |
31 | 1, 2, 3, 30 | caucvgprprlemcl 7706 |
1
⊢ (𝜑 → 𝐿 ∈ P) |