ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemclphr GIF version

Theorem caucvgprprlemclphr 7537
Description: Lemma for caucvgprpr 7544. The putative limit is a positive real. Like caucvgprprlemcl 7536 but without a distinct variable constraint between 𝜑 and 𝑟. (Contributed by Jim Kingdon, 19-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemclphr (𝜑𝐿P)
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟   𝐹,𝑙,𝑢,𝑟,𝑘   𝑛,𝐹,𝑘   𝑘,𝐿   𝑢,𝑙,𝑝,𝑞,𝑟   𝑚,𝑟   𝑘,𝑝,𝑞,𝑟   𝑢,𝑛,𝑙,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemclphr
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . 2 (𝜑𝐹:NP)
2 caucvgprpr.cau . 2 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
3 caucvgprpr.bnd . 2 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
4 caucvgprpr.lim . . 3 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
5 opeq1 3713 . . . . . . . . . . . . . 14 (𝑟 = 𝑠 → ⟨𝑟, 1o⟩ = ⟨𝑠, 1o⟩)
65eceq1d 6473 . . . . . . . . . . . . 13 (𝑟 = 𝑠 → [⟨𝑟, 1o⟩] ~Q = [⟨𝑠, 1o⟩] ~Q )
76fveq2d 5433 . . . . . . . . . . . 12 (𝑟 = 𝑠 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝑠, 1o⟩] ~Q ))
87oveq2d 5798 . . . . . . . . . . 11 (𝑟 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )))
98breq2d 3949 . . . . . . . . . 10 (𝑟 = 𝑠 → (𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))))
109abbidv 2258 . . . . . . . . 9 (𝑟 = 𝑠 → {𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))})
118breq1d 3947 . . . . . . . . . 10 (𝑟 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞))
1211abbidv 2258 . . . . . . . . 9 (𝑟 = 𝑠 → {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞})
1310, 12opeq12d 3721 . . . . . . . 8 (𝑟 = 𝑠 → ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩)
14 fveq2 5429 . . . . . . . 8 (𝑟 = 𝑠 → (𝐹𝑟) = (𝐹𝑠))
1513, 14breq12d 3950 . . . . . . 7 (𝑟 = 𝑠 → (⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠)))
1615cbvrexv 2658 . . . . . 6 (∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑠N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠))
1716a1i 9 . . . . 5 (𝑙Q → (∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑠N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠)))
1817rabbiia 2674 . . . 4 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} = {𝑙Q ∣ ∃𝑠N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠)}
197breq2d 3949 . . . . . . . . . . 11 (𝑟 = 𝑠 → (𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )))
2019abbidv 2258 . . . . . . . . . 10 (𝑟 = 𝑠 → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )})
217breq1d 3947 . . . . . . . . . . 11 (𝑟 = 𝑠 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞))
2221abbidv 2258 . . . . . . . . . 10 (𝑟 = 𝑠 → {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞})
2320, 22opeq12d 3721 . . . . . . . . 9 (𝑟 = 𝑠 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)
2414, 23oveq12d 5800 . . . . . . . 8 (𝑟 = 𝑠 → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩))
2524breq1d 3947 . . . . . . 7 (𝑟 = 𝑠 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩))
2625cbvrexv 2658 . . . . . 6 (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑠N ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩)
2726a1i 9 . . . . 5 (𝑢Q → (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑠N ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩))
2827rabbiia 2674 . . . 4 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} = {𝑢Q ∣ ∃𝑠N ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
2918, 28opeq12i 3718 . . 3 ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩ = ⟨{𝑙Q ∣ ∃𝑠N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠)}, {𝑢Q ∣ ∃𝑠N ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
304, 29eqtri 2161 . 2 𝐿 = ⟨{𝑙Q ∣ ∃𝑠N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠)}, {𝑢Q ∣ ∃𝑠N ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
311, 2, 3, 30caucvgprprlemcl 7536 1 (𝜑𝐿P)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  {cab 2126  wral 2417  wrex 2418  {crab 2421  cop 3535   class class class wbr 3937  wf 5127  cfv 5131  (class class class)co 5782  1oc1o 6314  [cec 6435  Ncnpi 7104   <N clti 7107   ~Q ceq 7111  Qcnq 7112   +Q cplq 7114  *Qcrq 7116   <Q cltq 7117  Pcnp 7123   +P cpp 7125  <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302
This theorem is referenced by:  caucvgprprlemexbt  7538  caucvgprprlemexb  7539
  Copyright terms: Public domain W3C validator