ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemclphr GIF version

Theorem caucvgprprlemclphr 7767
Description: Lemma for caucvgprpr 7774. The putative limit is a positive real. Like caucvgprprlemcl 7766 but without a disjoint variable condition between 𝜑 and 𝑟. (Contributed by Jim Kingdon, 19-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemclphr (𝜑𝐿P)
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟   𝐹,𝑙,𝑢,𝑟,𝑘   𝑛,𝐹,𝑘   𝑘,𝐿   𝑢,𝑙,𝑝,𝑞,𝑟   𝑚,𝑟   𝑘,𝑝,𝑞,𝑟   𝑢,𝑛,𝑙,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemclphr
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . 2 (𝜑𝐹:NP)
2 caucvgprpr.cau . 2 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
3 caucvgprpr.bnd . 2 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
4 caucvgprpr.lim . . 3 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
5 opeq1 3805 . . . . . . . . . . . . . 14 (𝑟 = 𝑠 → ⟨𝑟, 1o⟩ = ⟨𝑠, 1o⟩)
65eceq1d 6625 . . . . . . . . . . . . 13 (𝑟 = 𝑠 → [⟨𝑟, 1o⟩] ~Q = [⟨𝑠, 1o⟩] ~Q )
76fveq2d 5559 . . . . . . . . . . . 12 (𝑟 = 𝑠 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝑠, 1o⟩] ~Q ))
87oveq2d 5935 . . . . . . . . . . 11 (𝑟 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )))
98breq2d 4042 . . . . . . . . . 10 (𝑟 = 𝑠 → (𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))))
109abbidv 2311 . . . . . . . . 9 (𝑟 = 𝑠 → {𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))})
118breq1d 4040 . . . . . . . . . 10 (𝑟 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞))
1211abbidv 2311 . . . . . . . . 9 (𝑟 = 𝑠 → {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞})
1310, 12opeq12d 3813 . . . . . . . 8 (𝑟 = 𝑠 → ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩)
14 fveq2 5555 . . . . . . . 8 (𝑟 = 𝑠 → (𝐹𝑟) = (𝐹𝑠))
1513, 14breq12d 4043 . . . . . . 7 (𝑟 = 𝑠 → (⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠)))
1615cbvrexv 2727 . . . . . 6 (∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑠N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠))
1716a1i 9 . . . . 5 (𝑙Q → (∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑠N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠)))
1817rabbiia 2745 . . . 4 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} = {𝑙Q ∣ ∃𝑠N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠)}
197breq2d 4042 . . . . . . . . . . 11 (𝑟 = 𝑠 → (𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )))
2019abbidv 2311 . . . . . . . . . 10 (𝑟 = 𝑠 → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )})
217breq1d 4040 . . . . . . . . . . 11 (𝑟 = 𝑠 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞))
2221abbidv 2311 . . . . . . . . . 10 (𝑟 = 𝑠 → {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞})
2320, 22opeq12d 3813 . . . . . . . . 9 (𝑟 = 𝑠 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)
2414, 23oveq12d 5937 . . . . . . . 8 (𝑟 = 𝑠 → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩))
2524breq1d 4040 . . . . . . 7 (𝑟 = 𝑠 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩))
2625cbvrexv 2727 . . . . . 6 (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑠N ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩)
2726a1i 9 . . . . 5 (𝑢Q → (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑠N ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩))
2827rabbiia 2745 . . . 4 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} = {𝑢Q ∣ ∃𝑠N ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
2918, 28opeq12i 3810 . . 3 ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩ = ⟨{𝑙Q ∣ ∃𝑠N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠)}, {𝑢Q ∣ ∃𝑠N ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
304, 29eqtri 2214 . 2 𝐿 = ⟨{𝑙Q ∣ ∃𝑠N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑠, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑠)}, {𝑢Q ∣ ∃𝑠N ((𝐹𝑠) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑠, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑠, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
311, 2, 3, 30caucvgprprlemcl 7766 1 (𝜑𝐿P)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {cab 2179  wral 2472  wrex 2473  {crab 2476  cop 3622   class class class wbr 4030  wf 5251  cfv 5255  (class class class)co 5919  1oc1o 6464  [cec 6587  Ncnpi 7334   <N clti 7337   ~Q ceq 7341  Qcnq 7342   +Q cplq 7344  *Qcrq 7346   <Q cltq 7347  Pcnp 7353   +P cpp 7355  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iplp 7530  df-iltp 7532
This theorem is referenced by:  caucvgprprlemexbt  7768  caucvgprprlemexb  7769
  Copyright terms: Public domain W3C validator