ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgpr GIF version

Theorem cauappcvgpr 7857
Description: A Cauchy approximation has a limit. A Cauchy approximation, here 𝐹, is similar to a Cauchy sequence but is indexed by the desired tolerance (that is, how close together terms needs to be) rather than by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p. (varies) with a few differences such as that we are proving the existence of a limit without anything about how fast it converges (that is, mere existence instead of existence, in HoTT terms), and that the codomain of 𝐹 is Q rather than P. We also specify that every term needs to be larger than a fraction 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of caucvgpr 7877 and caucvgprpr 7907 but is somewhat simpler, so reading this one first may help understanding the other two.

(Contributed by Jim Kingdon, 19-Jun-2020.)

Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
Assertion
Ref Expression
cauappcvgpr (𝜑 → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑝   𝐹,𝑞,𝑦,𝑟,𝑢   𝐹,𝑝,𝑙,𝑞   𝑦,𝑙,𝑟   𝑢,𝑞,𝑦,𝑟   𝑢,𝑝,𝑟,𝑞,𝑙   𝜑,𝑞,𝑝
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑟,𝑙)   𝐴(𝑦,𝑢,𝑟,𝑞,𝑙)

Proof of Theorem cauappcvgpr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . 3 (𝜑𝐹:QQ)
2 cauappcvgpr.app . . 3 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
3 cauappcvgpr.bnd . . 3 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
4 oveq2 6015 . . . . . . . 8 (𝑧 = 𝑞 → (𝑙 +Q 𝑧) = (𝑙 +Q 𝑞))
5 fveq2 5629 . . . . . . . 8 (𝑧 = 𝑞 → (𝐹𝑧) = (𝐹𝑞))
64, 5breq12d 4096 . . . . . . 7 (𝑧 = 𝑞 → ((𝑙 +Q 𝑧) <Q (𝐹𝑧) ↔ (𝑙 +Q 𝑞) <Q (𝐹𝑞)))
76cbvrexv 2766 . . . . . 6 (∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧) ↔ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞))
87a1i 9 . . . . 5 (𝑙Q → (∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧) ↔ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)))
98rabbiia 2784 . . . 4 {𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)} = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
10 id 19 . . . . . . . . 9 (𝑧 = 𝑞𝑧 = 𝑞)
115, 10oveq12d 6025 . . . . . . . 8 (𝑧 = 𝑞 → ((𝐹𝑧) +Q 𝑧) = ((𝐹𝑞) +Q 𝑞))
1211breq1d 4093 . . . . . . 7 (𝑧 = 𝑞 → (((𝐹𝑧) +Q 𝑧) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑢))
1312cbvrexv 2766 . . . . . 6 (∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢)
1413a1i 9 . . . . 5 (𝑢Q → (∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢))
1514rabbiia 2784 . . . 4 {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢} = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
169, 15opeq12i 3862 . . 3 ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
171, 2, 3, 16cauappcvgprlemcl 7848 . 2 (𝜑 → ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ ∈ P)
181, 2, 3, 16cauappcvgprlemlim 7856 . 2 (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
19 oveq1 6014 . . . . . 6 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) = (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩))
2019breq2d 4095 . . . . 5 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩)))
21 breq1 4086 . . . . 5 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩ ↔ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
2220, 21anbi12d 473 . . . 4 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → ((⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)))
23222ralbidv 2554 . . 3 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩) ↔ ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)))
2423rspcev 2907 . 2 ((⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ ∈ P ∧ ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)) → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
2517, 18, 24syl2anc 411 1 (𝜑 → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  {crab 2512  cop 3669   class class class wbr 4083  wf 5314  cfv 5318  (class class class)co 6007  Qcnq 7475   +Q cplq 7477   <Q cltq 7480  Pcnp 7486   +P cpp 7488  <P cltp 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-2o 6569  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-pli 7500  df-mi 7501  df-lti 7502  df-plpq 7539  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-plqqs 7544  df-mqqs 7545  df-1nqqs 7546  df-rq 7547  df-ltnqqs 7548  df-enq0 7619  df-nq0 7620  df-0nq0 7621  df-plq0 7622  df-mq0 7623  df-inp 7661  df-iplp 7663  df-iltp 7665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator