| Step | Hyp | Ref
 | Expression | 
| 1 |   | cauappcvgpr.f | 
. . 3
⊢ (𝜑 → 𝐹:Q⟶Q) | 
| 2 |   | cauappcvgpr.app | 
. . 3
⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q
𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q
𝑞)))) | 
| 3 |   | cauappcvgpr.bnd | 
. . 3
⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) | 
| 4 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑧 = 𝑞 → (𝑙 +Q 𝑧) = (𝑙 +Q 𝑞)) | 
| 5 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑧 = 𝑞 → (𝐹‘𝑧) = (𝐹‘𝑞)) | 
| 6 | 4, 5 | breq12d 4046 | 
. . . . . . 7
⊢ (𝑧 = 𝑞 → ((𝑙 +Q 𝑧) <Q
(𝐹‘𝑧) ↔ (𝑙 +Q 𝑞) <Q
(𝐹‘𝑞))) | 
| 7 | 6 | cbvrexv 2730 | 
. . . . . 6
⊢
(∃𝑧 ∈
Q (𝑙
+Q 𝑧) <Q (𝐹‘𝑧) ↔ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
(𝐹‘𝑞)) | 
| 8 | 7 | a1i 9 | 
. . . . 5
⊢ (𝑙 ∈ Q →
(∃𝑧 ∈
Q (𝑙
+Q 𝑧) <Q (𝐹‘𝑧) ↔ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
(𝐹‘𝑞))) | 
| 9 | 8 | rabbiia 2748 | 
. . . 4
⊢ {𝑙 ∈ Q ∣
∃𝑧 ∈
Q (𝑙
+Q 𝑧) <Q (𝐹‘𝑧)} = {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)} | 
| 10 |   | id 19 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑞 → 𝑧 = 𝑞) | 
| 11 | 5, 10 | oveq12d 5940 | 
. . . . . . . 8
⊢ (𝑧 = 𝑞 → ((𝐹‘𝑧) +Q 𝑧) = ((𝐹‘𝑞) +Q 𝑞)) | 
| 12 | 11 | breq1d 4043 | 
. . . . . . 7
⊢ (𝑧 = 𝑞 → (((𝐹‘𝑧) +Q 𝑧) <Q
𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢)) | 
| 13 | 12 | cbvrexv 2730 | 
. . . . . 6
⊢
(∃𝑧 ∈
Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢) | 
| 14 | 13 | a1i 9 | 
. . . . 5
⊢ (𝑢 ∈ Q →
(∃𝑧 ∈
Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢)) | 
| 15 | 14 | rabbiia 2748 | 
. . . 4
⊢ {𝑢 ∈ Q ∣
∃𝑧 ∈
Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢} = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢} | 
| 16 | 9, 15 | opeq12i 3813 | 
. . 3
⊢
〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ Q (𝑙 +Q 𝑧) <Q
(𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉 = 〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉 | 
| 17 | 1, 2, 3, 16 | cauappcvgprlemcl 7720 | 
. 2
⊢ (𝜑 → 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ Q (𝑙 +Q
𝑧)
<Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉 ∈
P) | 
| 18 | 1, 2, 3, 16 | cauappcvgprlemlim 7728 | 
. 2
⊢ (𝜑 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ Q (𝑙 +Q 𝑧) <Q
(𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧
〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ Q (𝑙 +Q 𝑧) <Q
(𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉)) | 
| 19 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ Q (𝑙 +Q
𝑧)
<Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉 → (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) = (〈{𝑙 ∈ Q ∣
∃𝑧 ∈
Q (𝑙
+Q 𝑧) <Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉)) | 
| 20 | 19 | breq2d 4045 | 
. . . . 5
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ Q (𝑙 +Q
𝑧)
<Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉 →
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ↔
〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ Q (𝑙 +Q 𝑧) <Q
(𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉))) | 
| 21 |   | breq1 4036 | 
. . . . 5
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ Q (𝑙 +Q
𝑧)
<Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉 → (𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉 ↔ 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ Q (𝑙 +Q
𝑧)
<Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉)) | 
| 22 | 20, 21 | anbi12d 473 | 
. . . 4
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ Q (𝑙 +Q
𝑧)
<Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉 →
((〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧ 𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉) ↔ (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ Q (𝑙 +Q 𝑧) <Q
(𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧
〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ Q (𝑙 +Q 𝑧) <Q
(𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉))) | 
| 23 | 22 | 2ralbidv 2521 | 
. . 3
⊢ (𝑦 = 〈{𝑙 ∈ Q ∣ ∃𝑧 ∈ Q (𝑙 +Q
𝑧)
<Q (𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉 →
(∀𝑞 ∈
Q ∀𝑟
∈ Q (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧ 𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉) ↔ ∀𝑞 ∈ Q ∀𝑟 ∈ Q
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ Q (𝑙 +Q 𝑧) <Q
(𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧
〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ Q (𝑙 +Q 𝑧) <Q
(𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉))) | 
| 24 | 23 | rspcev 2868 | 
. 2
⊢
((〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ Q (𝑙 +Q 𝑧) <Q
(𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉 ∈
P ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P
(〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ Q (𝑙 +Q 𝑧) <Q
(𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧
〈{𝑙 ∈
Q ∣ ∃𝑧 ∈ Q (𝑙 +Q 𝑧) <Q
(𝐹‘𝑧)}, {𝑢 ∈ Q ∣ ∃𝑧 ∈ Q ((𝐹‘𝑧) +Q 𝑧) <Q
𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉)) → ∃𝑦 ∈ P ∀𝑞 ∈ Q
∀𝑟 ∈
Q (〈{𝑙
∣ 𝑙
<Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧ 𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉)) | 
| 25 | 17, 18, 24 | syl2anc 411 | 
1
⊢ (𝜑 → ∃𝑦 ∈ P ∀𝑞 ∈ Q
∀𝑟 ∈
Q (〈{𝑙
∣ 𝑙
<Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝑦 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧ 𝑦<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉)) |