ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgpr GIF version

Theorem cauappcvgpr 7788
Description: A Cauchy approximation has a limit. A Cauchy approximation, here 𝐹, is similar to a Cauchy sequence but is indexed by the desired tolerance (that is, how close together terms needs to be) rather than by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p. (varies) with a few differences such as that we are proving the existence of a limit without anything about how fast it converges (that is, mere existence instead of existence, in HoTT terms), and that the codomain of 𝐹 is Q rather than P. We also specify that every term needs to be larger than a fraction 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of caucvgpr 7808 and caucvgprpr 7838 but is somewhat simpler, so reading this one first may help understanding the other two.

(Contributed by Jim Kingdon, 19-Jun-2020.)

Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
Assertion
Ref Expression
cauappcvgpr (𝜑 → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑝   𝐹,𝑞,𝑦,𝑟,𝑢   𝐹,𝑝,𝑙,𝑞   𝑦,𝑙,𝑟   𝑢,𝑞,𝑦,𝑟   𝑢,𝑝,𝑟,𝑞,𝑙   𝜑,𝑞,𝑝
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑟,𝑙)   𝐴(𝑦,𝑢,𝑟,𝑞,𝑙)

Proof of Theorem cauappcvgpr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . 3 (𝜑𝐹:QQ)
2 cauappcvgpr.app . . 3 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
3 cauappcvgpr.bnd . . 3 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
4 oveq2 5962 . . . . . . . 8 (𝑧 = 𝑞 → (𝑙 +Q 𝑧) = (𝑙 +Q 𝑞))
5 fveq2 5586 . . . . . . . 8 (𝑧 = 𝑞 → (𝐹𝑧) = (𝐹𝑞))
64, 5breq12d 4061 . . . . . . 7 (𝑧 = 𝑞 → ((𝑙 +Q 𝑧) <Q (𝐹𝑧) ↔ (𝑙 +Q 𝑞) <Q (𝐹𝑞)))
76cbvrexv 2740 . . . . . 6 (∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧) ↔ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞))
87a1i 9 . . . . 5 (𝑙Q → (∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧) ↔ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)))
98rabbiia 2758 . . . 4 {𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)} = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
10 id 19 . . . . . . . . 9 (𝑧 = 𝑞𝑧 = 𝑞)
115, 10oveq12d 5972 . . . . . . . 8 (𝑧 = 𝑞 → ((𝐹𝑧) +Q 𝑧) = ((𝐹𝑞) +Q 𝑞))
1211breq1d 4058 . . . . . . 7 (𝑧 = 𝑞 → (((𝐹𝑧) +Q 𝑧) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑢))
1312cbvrexv 2740 . . . . . 6 (∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢)
1413a1i 9 . . . . 5 (𝑢Q → (∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢))
1514rabbiia 2758 . . . 4 {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢} = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
169, 15opeq12i 3827 . . 3 ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
171, 2, 3, 16cauappcvgprlemcl 7779 . 2 (𝜑 → ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ ∈ P)
181, 2, 3, 16cauappcvgprlemlim 7787 . 2 (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
19 oveq1 5961 . . . . . 6 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) = (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩))
2019breq2d 4060 . . . . 5 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩)))
21 breq1 4051 . . . . 5 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩ ↔ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
2220, 21anbi12d 473 . . . 4 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → ((⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)))
23222ralbidv 2531 . . 3 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩) ↔ ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)))
2423rspcev 2879 . 2 ((⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ ∈ P ∧ ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)) → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
2517, 18, 24syl2anc 411 1 (𝜑 → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {cab 2192  wral 2485  wrex 2486  {crab 2489  cop 3638   class class class wbr 4048  wf 5273  cfv 5277  (class class class)co 5954  Qcnq 7406   +Q cplq 7408   <Q cltq 7411  Pcnp 7417   +P cpp 7419  <P cltp 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-eprel 4341  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-1o 6512  df-2o 6513  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-pli 7431  df-mi 7432  df-lti 7433  df-plpq 7470  df-mpq 7471  df-enq 7473  df-nqqs 7474  df-plqqs 7475  df-mqqs 7476  df-1nqqs 7477  df-rq 7478  df-ltnqqs 7479  df-enq0 7550  df-nq0 7551  df-0nq0 7552  df-plq0 7553  df-mq0 7554  df-inp 7592  df-iplp 7594  df-iltp 7596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator