ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgpr GIF version

Theorem cauappcvgpr 7663
Description: A Cauchy approximation has a limit. A Cauchy approximation, here 𝐹, is similar to a Cauchy sequence but is indexed by the desired tolerance (that is, how close together terms needs to be) rather than by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p. (varies) with a few differences such as that we are proving the existence of a limit without anything about how fast it converges (that is, mere existence instead of existence, in HoTT terms), and that the codomain of 𝐹 is Q rather than P. We also specify that every term needs to be larger than a fraction 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of caucvgpr 7683 and caucvgprpr 7713 but is somewhat simpler, so reading this one first may help understanding the other two.

(Contributed by Jim Kingdon, 19-Jun-2020.)

Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
Assertion
Ref Expression
cauappcvgpr (𝜑 → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑝   𝐹,𝑞,𝑦,𝑟,𝑢   𝐹,𝑝,𝑙,𝑞   𝑦,𝑙,𝑟   𝑢,𝑞,𝑦,𝑟   𝑢,𝑝,𝑟,𝑞,𝑙   𝜑,𝑞,𝑝
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑟,𝑙)   𝐴(𝑦,𝑢,𝑟,𝑞,𝑙)

Proof of Theorem cauappcvgpr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . 3 (𝜑𝐹:QQ)
2 cauappcvgpr.app . . 3 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
3 cauappcvgpr.bnd . . 3 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
4 oveq2 5885 . . . . . . . 8 (𝑧 = 𝑞 → (𝑙 +Q 𝑧) = (𝑙 +Q 𝑞))
5 fveq2 5517 . . . . . . . 8 (𝑧 = 𝑞 → (𝐹𝑧) = (𝐹𝑞))
64, 5breq12d 4018 . . . . . . 7 (𝑧 = 𝑞 → ((𝑙 +Q 𝑧) <Q (𝐹𝑧) ↔ (𝑙 +Q 𝑞) <Q (𝐹𝑞)))
76cbvrexv 2706 . . . . . 6 (∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧) ↔ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞))
87a1i 9 . . . . 5 (𝑙Q → (∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧) ↔ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)))
98rabbiia 2724 . . . 4 {𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)} = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
10 id 19 . . . . . . . . 9 (𝑧 = 𝑞𝑧 = 𝑞)
115, 10oveq12d 5895 . . . . . . . 8 (𝑧 = 𝑞 → ((𝐹𝑧) +Q 𝑧) = ((𝐹𝑞) +Q 𝑞))
1211breq1d 4015 . . . . . . 7 (𝑧 = 𝑞 → (((𝐹𝑧) +Q 𝑧) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑢))
1312cbvrexv 2706 . . . . . 6 (∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢)
1413a1i 9 . . . . 5 (𝑢Q → (∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢))
1514rabbiia 2724 . . . 4 {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢} = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
169, 15opeq12i 3785 . . 3 ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
171, 2, 3, 16cauappcvgprlemcl 7654 . 2 (𝜑 → ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ ∈ P)
181, 2, 3, 16cauappcvgprlemlim 7662 . 2 (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
19 oveq1 5884 . . . . . 6 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) = (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩))
2019breq2d 4017 . . . . 5 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩)))
21 breq1 4008 . . . . 5 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩ ↔ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
2220, 21anbi12d 473 . . . 4 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → ((⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)))
23222ralbidv 2501 . . 3 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ → (∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩) ↔ ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)))
2423rspcev 2843 . 2 ((⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ ∈ P ∧ ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧Q (𝑙 +Q 𝑧) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧Q ((𝐹𝑧) +Q 𝑧) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)) → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
2517, 18, 24syl2anc 411 1 (𝜑 → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  {cab 2163  wral 2455  wrex 2456  {crab 2459  cop 3597   class class class wbr 4005  wf 5214  cfv 5218  (class class class)co 5877  Qcnq 7281   +Q cplq 7283   <Q cltq 7286  Pcnp 7292   +P cpp 7294  <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469  df-iltp 7471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator