Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ioopos | GIF version |
Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.) |
Ref | Expression |
---|---|
ioopos | ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 7978 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | pnfxr 7984 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | iooval2 9886 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (0(,)+∞) = {𝑥 ∈ ℝ ∣ (0 < 𝑥 ∧ 𝑥 < +∞)}) | |
4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ (0 < 𝑥 ∧ 𝑥 < +∞)} |
5 | ltpnf 9751 | . . . 4 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
6 | 5 | biantrud 304 | . . 3 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (0 < 𝑥 ∧ 𝑥 < +∞))) |
7 | 6 | rabbiia 2720 | . 2 ⊢ {𝑥 ∈ ℝ ∣ 0 < 𝑥} = {𝑥 ∈ ℝ ∣ (0 < 𝑥 ∧ 𝑥 < +∞)} |
8 | 4, 7 | eqtr4i 2199 | 1 ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∈ wcel 2146 {crab 2457 class class class wbr 3998 (class class class)co 5865 ℝcr 7785 0cc0 7786 +∞cpnf 7963 ℝ*cxr 7965 < clt 7966 (,)cioo 9859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-ioo 9863 |
This theorem is referenced by: ioorp 9922 repos 9941 |
Copyright terms: Public domain | W3C validator |