| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioopos | GIF version | ||
| Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.) |
| Ref | Expression |
|---|---|
| ioopos | ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8132 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | pnfxr 8138 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | iooval2 10050 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (0(,)+∞) = {𝑥 ∈ ℝ ∣ (0 < 𝑥 ∧ 𝑥 < +∞)}) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ (0 < 𝑥 ∧ 𝑥 < +∞)} |
| 5 | ltpnf 9915 | . . . 4 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
| 6 | 5 | biantrud 304 | . . 3 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (0 < 𝑥 ∧ 𝑥 < +∞))) |
| 7 | 6 | rabbiia 2758 | . 2 ⊢ {𝑥 ∈ ℝ ∣ 0 < 𝑥} = {𝑥 ∈ ℝ ∣ (0 < 𝑥 ∧ 𝑥 < +∞)} |
| 8 | 4, 7 | eqtr4i 2230 | 1 ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {crab 2489 class class class wbr 4048 (class class class)co 5954 ℝcr 7937 0cc0 7938 +∞cpnf 8117 ℝ*cxr 8119 < clt 8120 (,)cioo 10023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-ioo 10027 |
| This theorem is referenced by: ioorp 10086 repos 10105 |
| Copyright terms: Public domain | W3C validator |